BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36244147)

  • 1. Pressure management in water distribution systems through PRVs optimal placement and settings.
    Price E; Abhijith GR; Ostfeld A
    Water Res; 2022 Nov; 226():119236. PubMed ID: 36244147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal design-for-control of self-cleaning water distribution networks using a convex multi-start algorithm.
    Jenks B; Pecci F; Stoianov I
    Water Res; 2023 Mar; 231():119602. PubMed ID: 36736109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph Laplace Regularization-based pressure sensor placement strategy for leak localization in the water distribution networks under joint hydraulic and topological feature spaces.
    Cheng M; Li J; Wang C; Ye C; Chang Z
    Water Res; 2024 Jun; 257():121666. PubMed ID: 38703543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure monitoring in water distribution networks.
    Misiunas D; Vítkovský J; Olsson G; Lambert M; Simpson A
    Water Sci Technol; 2006; 53(4-5):503-11. PubMed ID: 16722103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph neural network for integrated water network partitioning and dynamic district metered areas.
    Fu M; Rong K; Huang Y; Zhang M; Zheng L; Zheng J; Falah MW; Yaseen ZM
    Sci Rep; 2022 Nov; 12(1):19466. PubMed ID: 36376376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal sensor placement for leak location in water distribution networks: A feature selection method combined with graph signal processing.
    Cheng M; Li J
    Water Res; 2023 Aug; 242():120313. PubMed ID: 37451191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-objective optimization of water distribution networks based on non-dominated sequencing genetic algorithm.
    Tao Y; Yan D; Yang H; Ma L; Kou C
    PLoS One; 2022; 17(11):e0277954. PubMed ID: 36441704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimisation of Fixed-Outlet and Flow-Modulated Pressure Reduction Measures in Looped Water Distribution Networks Constrained by Fire-Fighting Capacity Requirements.
    Rokstad MM
    Int J Environ Res Public Health; 2021 Jul; 18(13):. PubMed ID: 34281025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient k-means clustering and greedy selection-based reduction of nodal search space for optimization of sensor placement in the water distribution networks.
    Gautam DK; Kotecha P; Subbiah S
    Water Res; 2022 Jul; 220():118666. PubMed ID: 35709596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning identifies accurate burst locations in water distribution networks.
    Zhou X; Tang Z; Xu W; Meng F; Chu X; Xin K; Fu G
    Water Res; 2019 Dec; 166():115058. PubMed ID: 31536886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance and reliability analysis of water distribution systems under cascading failures and the identification of crucial pipes.
    Shuang Q; Zhang M; Yuan Y
    PLoS One; 2014; 9(2):e88445. PubMed ID: 24551102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible decision-making framework for developing operation protocol for water distribution systems.
    Abhijith GR; Ostfeld A
    J Environ Manage; 2022 Oct; 320():115817. PubMed ID: 36056480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory experiments and simulation analysis to evaluate the application potential of pressure remote RTC in water distribution networks.
    Campisano A; Modica C; Musmeci F; Bosco C; Gullotta A
    Water Res; 2020 Sep; 183():116072. PubMed ID: 32622237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic performance benchmarking for effective management of water distribution networks: An innovative composite index-based approach.
    Zaman D; Gupta AK; Uddameri V; Tiwari MK; Ghosal PS
    J Environ Manage; 2021 Dec; 299():113603. PubMed ID: 34454199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bi-objective design-for-control for improving the pressure management and resilience of water distribution networks.
    Ulusoy AJ; Mahmoud HA; Pecci F; Keedwell EC; Stoianov I
    Water Res; 2022 Aug; 222():118914. PubMed ID: 35933815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiobjective evolutionary optimization of water distribution systems: Exploiting diversity with infeasible solutions.
    Tanyimboh TT; Seyoum AG
    J Environ Manage; 2016 Dec; 183():133-141. PubMed ID: 27589918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decision support system to divide a large network into suitable District Metered Areas.
    Gomes R; Marques AS; Sousa J
    Water Sci Technol; 2012; 65(9):1667-75. PubMed ID: 22508131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure Sensor Placement for Leak Localization in Water Distribution Networks Using Information Theory.
    Santos-Ruiz I; López-Estrada FR; Puig V; Valencia-Palomo G; Hernández HR
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Management and health risk assessment of chemical contamination events in water distribution systems using PSO.
    Moghaddam A; Afsharnia M; Mokhtari M; Peirovi-Minaee R
    Environ Monit Assess; 2022 Apr; 194(5):362. PubMed ID: 35416506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust sensor placement for sustainable leakage management in water distribution networks of developing economies: A hybrid decision support framework.
    Zaman D; Gupta AK; Uddameri V; Tiwari MK; Sen D
    J Environ Manage; 2022 Oct; 320():115816. PubMed ID: 35932744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.