BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36244736)

  • 1. Antibacterial activity and cytocompatibility evaluation of the antimicrobial peptide Nal-P-113-loaded graphene oxide coating on titanium.
    Cheng Q; Lu R; Wang X; Chen S
    Dent Mater J; 2022 Nov; 41(6):905-915. PubMed ID: 36244736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene oxide-coated porous titanium for pulp sealing: an antibacterial and dentino-inductive restorative material.
    Sun N; Yin S; Lu Y; Zhang W; Jiang X
    J Mater Chem B; 2020 Jul; 8(26):5606-5619. PubMed ID: 32478365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minocycline hydrochloride loaded on titanium by graphene oxide: an excellent antibacterial platform with the synergistic effect of contact-killing and release-killing.
    Qian W; Qiu J; Su J; Liu X
    Biomater Sci; 2018 Jan; 6(2):304-313. PubMed ID: 29184938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term antibacterial activity of a composite coating on titanium for dental implant application.
    Cheng Y; Mei S; Kong X; Liu X; Gao B; Chen B; Wu J
    J Biomater Appl; 2021 Jan; 35(6):643-654. PubMed ID: 33045872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility.
    Zhou L; Lai Y; Huang W; Huang S; Xu Z; Chen J; Wu D
    Colloids Surf B Biointerfaces; 2015 Apr; 128():552-560. PubMed ID: 25800357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic antibacterial effect of graphene-coated titanium loaded with levofloxacin.
    Sun J; Liu X; Lyu C; Hu Y; Zou D; He YS; Lu J
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112090. PubMed ID: 34507071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibacterial activity and cytocompatibility of an implant coating consisting of TiO
    Li T; Wang N; Chen S; Lu R; Li H; Zhang Z
    Int J Nanomedicine; 2017; 12():2995-3007. PubMed ID: 28442908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis.
    Fatani EJ; Almutairi HH; Alharbi AO; Alnakhli YO; Divakar DD; Muzaheed ; Alkheraif AA; Khan AA
    Microb Pathog; 2017 Nov; 112():190-194. PubMed ID: 28966064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced antibacterial activity of titanium by surface modification with polydopamine and silver for dental implant application.
    Choi SH; Jang YS; Jang JH; Bae TS; Lee SJ; Lee MH
    J Appl Biomater Funct Mater; 2019; 17(3):2280800019847067. PubMed ID: 31530071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of antibacterial properties and biocompatibility of Ti
    Wang X; Diwu W; Guo J; Yan M; Ma W; Yang M; Bi L; Han Y
    Biochem Biophys Res Commun; 2023 Jul; 665():35-44. PubMed ID: 37156051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities.
    Li X; Qi M; Sun X; Weir MD; Tay FR; Oates TW; Dong B; Zhou Y; Wang L; Xu HHK
    Acta Biomater; 2019 Aug; 94():627-643. PubMed ID: 31212111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ti-GO-Ag nanocomposite: the effect of content level on the antimicrobial activity and cytotoxicity.
    Jin J; Zhang L; Shi M; Zhang Y; Wang Q
    Int J Nanomedicine; 2017; 12():4209-4224. PubMed ID: 28652728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the size of GO in GO/nAg nanocomposite coatings on orthodontic nickel-titanium alloy toward excellent anti-corrosion, antibacterial, and tribological properties.
    Dai D; Li D; Zhang C
    Biomater Sci; 2023 Jul; 11(14):4859-4873. PubMed ID: 37254662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface.
    Pan CJ; Pang LQ; Gao F; Wang YN; Liu T; Ye W; Hou YH
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():333-40. PubMed ID: 27040227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Antibacterial and Osteogenic Properties of Graphene Oxide Loaded with Berberine on Biomedical Titanium.
    Han XY; Meng T; Ye JX; Yin HB; Song DW
    J Biomed Nanotechnol; 2022 Mar; 18(3):849-859. PubMed ID: 35715924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart Titanium Coating Composed of Antibiotic Conjugated Peptides as an Infection-Responsive Antibacterial Agent.
    Zhang Y; Hu K; Xing X; Zhang J; Zhang MR; Ma X; Shi R; Zhang L
    Macromol Biosci; 2021 Jan; 21(1):e2000194. PubMed ID: 33052007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on antibacterial properties and osteoblast activity of antimicrobial peptide coatings on titanium implants].
    Sun FQ; Li MQ; Peng SH; Zhang HM; Liu M; Qu XY
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2018 Jun; 53(6):419-424. PubMed ID: 29886638
    [No Abstract]   [Full Text] [Related]  

  • 18. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium.
    Shi J; Liu Y; Wang Y; Zhang J; Zhao S; Yang G
    Sci Rep; 2015 Nov; 5():16336. PubMed ID: 26548760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Lactoferrin-Derived Amyloid Coating for Enhancing Soft Tissue Seal and Antibacterial Activity of Titanium Implants.
    Wang WR; Li J; Gu JT; Hu BW; Qin W; Zhu YN; Guo ZX; Ma YX; Tay F; Jiao K; Niu L
    Adv Healthc Mater; 2023 Apr; 12(11):e2203086. PubMed ID: 36594680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of electrochemical oxidation and drug loading on the antibacterial properties and cell biocompatibility of titanium substrates.
    Nowruzi F; Imani R; Faghihi S
    Sci Rep; 2022 May; 12(1):8595. PubMed ID: 35597786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.