BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36245041)

  • 1. Transcriptional noise adjusted for expression levels reveals genes with high transcriptional noise that are highly expressed, functionally related, and co-regulated in yeast.
    Palenchar PM; DeStefanis T
    Curr Genet; 2022 Dec; 68(5-6):675-686. PubMed ID: 36245041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional Profiling of
    Rong-Mullins X; Ayers MC; Summers M; Gallagher JEG
    G3 (Bethesda); 2018 Feb; 8(2):607-619. PubMed ID: 29208650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast transcription factor Crz1 is activated by light in a Ca2+/calcineurin-dependent and PKA-independent manner.
    Bodvard K; Jörhov A; Blomberg A; Molin M; Käll M
    PLoS One; 2013; 8(1):e53404. PubMed ID: 23335962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capturing hidden regulation based on noise change of gene expression level from single cell RNA-seq in yeast.
    Itoh T; Makino T
    Sci Rep; 2021 Nov; 11(1):22547. PubMed ID: 34799619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes.
    Rep M; Krantz M; Thevelein JM; Hohmann S
    J Biol Chem; 2000 Mar; 275(12):8290-300. PubMed ID: 10722658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation.
    Smith A; Ward MP; Garrett S
    EMBO J; 1998 Jul; 17(13):3556-64. PubMed ID: 9649426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of transcriptional networks in yeast: alternative teams of transcriptional factors for different species.
    Muñoz A; Santos Muñoz D; Zimin A; Yorke JA
    BMC Genomics; 2016 Nov; 17(Suppl 10):826. PubMed ID: 28185554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons.
    Boy-Marcotte E; Lagniel G; Perrot M; Bussereau F; Boudsocq A; Jacquet M; Labarre J
    Mol Microbiol; 1999 Jul; 33(2):274-83. PubMed ID: 10411744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sfl1p acts as an activator of the HSP30 gene in Saccharomyces cerevisiae.
    Galeote VA; Alexandre H; Bach B; Delobel P; Dequin S; Blondin B
    Curr Genet; 2007 Aug; 52(2):55-63. PubMed ID: 17594096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Msn2p/Msn4p act as a key transcriptional activator of yeast cytoplasmic thiol peroxidase II.
    Hong SK; Cha MK; Choi YS; Kim WC; Kim IH
    J Biol Chem; 2002 Apr; 277(14):12109-17. PubMed ID: 11821410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of Saccharomyces cerevisiae to the herbicide 2,4-dichlorophenoxyacetic acid, mediated by Msn2p- and Msn4p-regulated genes: important role of SPI1.
    Simões T; Teixeira MC; Fernandes AR; Sá-Correia I
    Appl Environ Microbiol; 2003 Jul; 69(7):4019-28. PubMed ID: 12839777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae phospholipase C regulates transcription of Msn2p-dependent stress-responsive genes.
    Demczuk A; Guha N; Nguyen PH; Desai P; Chang J; Guzinska K; Rollins J; Ghosh CC; Goodwin L; Vancura A
    Eukaryot Cell; 2008 Jun; 7(6):967-79. PubMed ID: 18375619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulatory network shapes the genome structure of Saccharomyces cerevisiae.
    Li S; Heermann DW
    Nucleus; 2013; 4(3):216-28. PubMed ID: 23674068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast.
    Csárdi G; Franks A; Choi DS; Airoldi EM; Drummond DA
    PLoS Genet; 2015 May; 11(5):e1005206. PubMed ID: 25950722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan.
    Zakrzewska A; Boorsma A; Brul S; Hellingwerf KJ; Klis FM
    Eukaryot Cell; 2005 Apr; 4(4):703-15. PubMed ID: 15821130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes.
    Willis IM; Chua G; Tong AH; Brost RL; Hughes TR; Boone C; Moir RD
    PLoS Genet; 2008 Jul; 4(7):e1000112. PubMed ID: 18604275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: modeling and experiments reveal hierarchy in glucose repression.
    Prasad V; Venkatesh KV
    BMC Syst Biol; 2008 Nov; 2():97. PubMed ID: 19014615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoter sequence determines the relationship between expression level and noise.
    Carey LB; van Dijk D; Sloot PM; Kaandorp JA; Segal E
    PLoS Biol; 2013; 11(4):e1001528. PubMed ID: 23565060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner.
    Amorós M; Estruch F
    Mol Microbiol; 2001 Mar; 39(6):1523-32. PubMed ID: 11260469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway.
    García R; Bermejo C; Grau C; Pérez R; Rodríguez-Peña JM; Francois J; Nombela C; Arroyo J
    J Biol Chem; 2004 Apr; 279(15):15183-95. PubMed ID: 14739279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.