BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36245340)

  • 1. Stereochemistry Controls Dihydrogen Bonding Strengths in Chiral Amine Boranes Adducts.
    Kemper M; Drost DA; Engelage E; Merten C
    Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202213859. PubMed ID: 36245340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of dihydrogen bonds in amine borane chemistry.
    Chen X; Zhao JC; Shore SG
    Acc Chem Res; 2013 Nov; 46(11):2666-75. PubMed ID: 24020948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular Interactions of a Chiral Amine Borane Adduct Revealed by VCD Spectroscopy.
    Osowski T; Golbek J; Merz K; Merten C
    J Phys Chem A; 2016 Jun; 120(24):4108-15. PubMed ID: 27253203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducing Propeller Chirality in Triaryl Boranes with Chiral Amines.
    Kemper M; Reese S; Engelage E; Merten C
    Chemistry; 2022 Dec; 28(70):e202202812. PubMed ID: 36129179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of dihydrogen bonding of a chiral amine-borane complex in solution by VCD spectroscopy.
    Merten C; Berger CJ; McDonald R; Xu Y
    Angew Chem Int Ed Engl; 2014 Sep; 53(37):9940-3. PubMed ID: 25044510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge transfer via the dative N-B bond and dihydrogen contacts. Experimental and theoretical electron density studies of four deltahedral boranes.
    Mebs S; Kalinowski R; Grabowsky S; Förster D; Kickbusch R; Justus E; Morgenroth W; Paulmann C; Luger P; Gabel D; Lentz D
    J Phys Chem A; 2011 Mar; 115(8):1385-95. PubMed ID: 21306162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral Molecular Propellers of Triarylborane Ammonia Adducts.
    Kemper M; Engelage E; Merten C
    Angew Chem Int Ed Engl; 2021 Feb; 60(6):2958-2962. PubMed ID: 33197119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge transfer via the dative N-B bond and dihydrogen contacts. Experimental and theoretical electron density studies of small Lewis acid-base adducts.
    Mebs S; Grabowsky S; Förster D; Kickbusch R; Hartl M; Daemen LL; Morgenroth W; Luger P; Paulus B; Lentz D
    J Phys Chem A; 2010 Sep; 114(37):10185-96. PubMed ID: 20726618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting metal-ligand bifunctional reactions in the design of iron asymmetric hydrogenation catalysts.
    Morris RH
    Acc Chem Res; 2015 May; 48(5):1494-502. PubMed ID: 25897779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT investigation on dihydrogen-bonded amine-borane complexes.
    Yan S; Zou H; Kang W; Sun L
    J Mol Model; 2016 Jan; 22(1):17. PubMed ID: 26696542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel infrared spectra for intermolecular dihydrogen bonding of the phenol-borane-trimethylamine complex in electronically excited state.
    Zhao GJ; Han KL
    J Chem Phys; 2007 Jul; 127(2):024306. PubMed ID: 17640127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do Secondary Electrostatic Interactions Influence Multiple Dihydrogen Bonds? AA-DD Array on an Amine-Borane Aza-Coronand: Theoretical Studies and Synthesis.
    Bella G; Santoro A; Nicolò F; Bruno G; Cordaro M
    Chemphyschem; 2021 Mar; 22(6):593-605. PubMed ID: 33432782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dihydrogen generation from amine/boranes: synthesis, FT-ICR, and computational studies.
    Abboud JL; Németh B; Guillemin JC; Burk P; Adamson A; Nerut ER
    Chemistry; 2012 Mar; 18(13):3981-91. PubMed ID: 22354692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dihydrogen Bonding-Seen through the Eyes of Vibrational Spectroscopy.
    Freindorf M; McCutcheon M; Beiranvand N; Kraka E
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bis sigma-bond dihydrogen and borane ruthenium complexes: bonding nature, catalytic applications, and reversible hydrogen release.
    Alcaraz G; Grellier M; Sabo-Etienne S
    Acc Chem Res; 2009 Oct; 42(10):1640-9. PubMed ID: 19586012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotamer stability in cis-[Pt(diA)G2] complexes (diA = diamine derivative and G = guanine derivative) mediated by carrier-ligand amine stereochemistry as revealed by circular dichroism spectroscopy.
    Benedetti M; Marzilli LG; Natile G
    Chemistry; 2005 Sep; 11(18):5302-10. PubMed ID: 15997435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dihydrogen bond cooperativity in aza-borane derivatives.
    Alkorta I; Blanco F; Elguero J
    J Phys Chem A; 2010 Aug; 114(32):8457-62. PubMed ID: 20701354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bonding in ammonia borane: an analysis based on the natural orbitals for chemical valence and the extended transition state method (ETS-NOCV).
    Mitoraj MP
    J Phys Chem A; 2011 Dec; 115(51):14708-16. PubMed ID: 22085293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen bonding mediated by key orbital interactions determines hydration enthalpy differences of phosphate water clusters.
    Ruben EA; Chapman MS; Evanseck JD
    J Phys Chem A; 2007 Oct; 111(42):10804-14. PubMed ID: 17915844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.