BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36245367)

  • 1. Optimized osteogenesis of biological hydroxyapatite-based bone grafting materials by ion doping and osteoimmunomodulation.
    Xing Y; Zhong X; Chen Z; Liu Q
    Biomed Mater Eng; 2023; 34(3):195-213. PubMed ID: 36245367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis
    Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W
    Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesium Enhances Osteogenesis of BMSCs by Tuning Osteoimmunomodulation.
    Zhang X; Chen Q; Mao X
    Biomed Res Int; 2019; 2019():7908205. PubMed ID: 31828131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunomodulatory Properties: The Accelerant of Hydroxyapatite-Based Materials for Bone Regeneration.
    Shang L; Shao J; Ge S
    Tissue Eng Part C Methods; 2022 Aug; 28(8):377-392. PubMed ID: 35196904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sericin/Nano-Hydroxyapatite Hydrogels Based on Graphene Oxide for Effective Bone Regeneration via Immunomodulation and Osteoinduction.
    Fu M; Li J; Liu M; Yang C; Wang Q; Wang H; Chen B; Fu Q; Sun G
    Int J Nanomedicine; 2023; 18():1875-1895. PubMed ID: 37051313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate.
    Chen Z; Mao X; Tan L; Friis T; Wu C; Crawford R; Xiao Y
    Biomaterials; 2014 Oct; 35(30):8553-65. PubMed ID: 25017094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis.
    Zhong Z; Wu X; Wang Y; Li M; Li Y; Liu X; Zhang X; Lan Z; Wang J; Du Y; Zhang S
    Bioact Mater; 2022 Apr; 10():195-206. PubMed ID: 34901539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized osteogenesis of porcine bone-derived xenograft through surface coating of magnesium-doped nanohydroxyapatite.
    Xing Y; Zhong X; Chen S; Wu S; Chen K; Li X; Su M; Liu X; Zhong J; Chen Z; Pan H; Chen Z; Liu Q
    Biomed Mater; 2023 Aug; 18(5):. PubMed ID: 37604162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite.
    Kazimierczak P; Kolmas J; Przekora A
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo evaluation of porous lithium-doped hydroxyapatite scaffolds for the treatment of bone defect.
    Luo Y; Li D; Zhao J; Yang Z; Kang P
    Biomed Mater Eng; 2018; 29(6):699-721. PubMed ID: 30282329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sol-gel based synthesis and biological properties of zinc integrated nano bioglass ceramics for bone tissue regeneration.
    Paramita P; Ramachandran M; Narashiman S; Nagarajan S; Sukumar DK; Chung TW; Ambigapathi M
    J Mater Sci Mater Med; 2021 Jan; 32(1):5. PubMed ID: 33471255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of osteopromotive poly (octamethylene citrate glycerophosphate) for enhanced bone regeneration.
    He Y; Li Q; Ma C; Xie D; Li L; Zhao Y; Shan D; Chomos SK; Dong C; Tierney JW; Sun L; Lu D; Gui L; Yang J
    Acta Biomater; 2019 Jul; 93():180-191. PubMed ID: 30926580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of bovine derived hydroxyapatite and synthetic hydroxyapatite graft in bone regeneration of human maxillary cystic defects: a clinico-radiological study.
    Kattimani VS; Chakravarthi SP; Neelima Devi KN; Sridhar MS; Prasad LK
    Indian J Dent Res; 2014; 25(5):594-601. PubMed ID: 25511058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion incorporation into bone grafting materials.
    Zhao Q; Ni Y; Wei H; Duan Y; Chen J; Xiao Q; Gao J; Yu Y; Cui Y; Ouyang S; Miron RJ; Zhang Y; Wu C
    Periodontol 2000; 2024 Feb; 94(1):213-230. PubMed ID: 37823468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of chitosan infiltration on hydroxyapatite scaffolds derived from New Zealand bovine cancellous bones for bone regeneration.
    Ramesh N; Ratnayake JTB; Moratti SC; Dias GJ
    Int J Biol Macromol; 2020 Oct; 160():1009-1020. PubMed ID: 32504711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of bone-like hydroxyapatite/polyamino acid composite materials for their biological properties and effects on the reconstruction of long bone defects.
    Yan L; Jiang DM
    Drug Des Devel Ther; 2015; 9():6497-508. PubMed ID: 26719675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite or Fluorapatite-Which Bioceramic Is Better as a Base for the Production of Bone Scaffold?-A Comprehensive Comparative Study.
    Kazimierczak P; Wessely-Szponder J; Palka K; Barylyak A; Zinchenko V; Przekora A
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printable Composite Biomaterials Based on GelMA and Hydroxyapatite Powders Doped with Cerium Ions for Bone Tissue Regeneration.
    Leu Alexa R; Cucuruz A; Ghițulică CD; Voicu G; Stamat Balahura LR; Dinescu S; Vlasceanu GM; Stavarache C; Ianchis R; Iovu H; Costache M
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan/hydroxyapatite nanocomposite scaffolds to modulate osteogenic and inflammatory response.
    Soriente A; Fasolino I; Gomez-Sánchez A; Prokhorov E; Buonocore GG; Luna-Barcenas G; Ambrosio L; Raucci MG
    J Biomed Mater Res A; 2022 Feb; 110(2):266-272. PubMed ID: 34331513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.