BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36245435)

  • 1. Altering osteoclast numbers using CTSK models in utero affects mice offspring craniofacial morphology.
    Hassan MG; Vargas R; Zhang B; Marcel N; Cox TC; Jheon AH
    Orthod Craniofac Res; 2023 Aug; 26(3):338-348. PubMed ID: 36245435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of vitamin D receptor in mature osteoclasts results in altered osteoclastic activity and bone loss.
    Starczak Y; Reinke DC; Barratt KR; Ryan JW; Russell PK; Clarke MV; St-Arnaud R; Morris HA; Davey RA; Atkins GJ; Anderson PH
    J Steroid Biochem Mol Biol; 2018 Mar; 177():77-82. PubMed ID: 29107736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TGF-β Signaling in Cranial Neural Crest Affects Late-Stage Mandibular Bone Resorption and Length.
    Houchen CJ; Ghanem S; Kaartinen V; Bumann EE
    bioRxiv; 2024 May; ():. PubMed ID: 38826301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal environment and craniofacial growth: geometric morphometric analysis of mandibular shape changes with in utero thyroxine overexposure in mice.
    Kesterke MJ; Judd MA; Mooney MP; Siegel MI; Elsalanty M; Howie RN; Weinberg SM; Cray JJ
    J Anat; 2018 Jul; 233(1):46-54. PubMed ID: 29611183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryonic inhibition of colony-stimulating factor 1 receptor impacts craniofacial morphogenesis.
    Nagra A; Katsube M; Gao W; Rosin JM; Vora SR
    Orthod Craniofac Res; 2023 Dec; 26 Suppl 1():20-28. PubMed ID: 37231583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preservation of type H vessels and osteoblasts by enhanced preosteoclast platelet-derived growth factor type BB attenuates glucocorticoid-induced osteoporosis in growing mice.
    Yang P; Lv S; Wang Y; Peng Y; Ye Z; Xia Z; Ding G; Cao X; Crane JL
    Bone; 2018 Sep; 114():1-13. PubMed ID: 29800693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth.
    Zhang Y; Ji D; Li L; Yang S; Zhang H; Duan X
    Theranostics; 2019; 9(5):1387-1400. PubMed ID: 30867839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infant cynomolgus monkeys exposed to denosumab in utero exhibit an osteoclast-poor osteopetrotic-like skeletal phenotype at birth and in the early postnatal period.
    Boyce RW; Varela A; Chouinard L; Bussiere JL; Chellman GJ; Ominsky MS; Pyrah IT
    Bone; 2014 Jul; 64():314-25. PubMed ID: 24727159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation.
    Lotinun S; Kiviranta R; Matsubara T; Alzate JA; Neff L; Lüth A; Koskivirta I; Kleuser B; Vacher J; Vuorio E; Horne WC; Baron R
    J Clin Invest; 2013 Feb; 123(2):666-81. PubMed ID: 23321671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoclast activity sculpts craniofacial form to permit sensorineural patterning in the zebrafish skull.
    Miao KZ; Cozzone A; Caetano-Lopes J; Harris MP; Fisher S
    Front Endocrinol (Lausanne); 2022; 13():969481. PubMed ID: 36387889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio.
    Kiviranta R; Morko J; Alatalo SL; NicAmhlaoibh R; Risteli J; Laitala-Leinonen T; Vuorio E
    Bone; 2005 Jan; 36(1):159-72. PubMed ID: 15664014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive Activation of β-Catenin in Differentiated Osteoclasts Induces Bone Loss in Mice.
    Sui X; Deng S; Liu M; Fan L; Wang Y; Xu H; Sun Y; Kishen A; Zhang Q
    Cell Physiol Biochem; 2018; 48(5):2091-2102. PubMed ID: 30107384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth.
    Mosig RA; Dowling O; DiFeo A; Ramirez MC; Parker IC; Abe E; Diouri J; Aqeel AA; Wylie JD; Oblander SA; Madri J; Bianco P; Apte SS; Zaidi M; Doty SB; Majeska RJ; Schaffler MB; Martignetti JA
    Hum Mol Genet; 2007 May; 16(9):1113-23. PubMed ID: 17400654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein.
    Foster BL; Ao M; Willoughby C; Soenjaya Y; Holm E; Lukashova L; Tran AB; Wimer HF; Zerfas PM; Nociti FH; Kantovitz KR; Quan BD; Sone ED; Goldberg HA; Somerman MJ
    Bone; 2015 Sep; 78():150-64. PubMed ID: 25963390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Function of RUNX2 in Regulating Osteoclast Differentiation via the AKT/NFATc1/CTSK Axis.
    Xin Y; Liu Y; Liu D; Li J; Zhang C; Wang Y; Zheng S
    Calcif Tissue Int; 2020 May; 106(5):553-566. PubMed ID: 32008052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hairy and enhancer of split 1 is a primary effector of NOTCH2 signaling and induces osteoclast differentiation and function.
    Yu J; Schilling L; Eller T; Canalis E
    J Biol Chem; 2021 Dec; 297(6):101376. PubMed ID: 34742737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal Phenotype Analysis of a Conditional Stat3 Deletion Mouse Model.
    Yang Y; Chen Q; Zhou S; Gong X; Xu H; Hong Y; Dai Q; Jiang L
    J Vis Exp; 2020 Jul; (161):. PubMed ID: 32716374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Talin1 and Rap1 are critical for osteoclast function.
    Zou W; Izawa T; Zhu T; Chappel J; Otero K; Monkley SJ; Critchley DR; Petrich BG; Morozov A; Ginsberg MH; Teitelbaum SL
    Mol Cell Biol; 2013 Feb; 33(4):830-44. PubMed ID: 23230271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altering calcium and phosphorus levels in utero affects adult mouse mandibular morphology.
    Hassan MG; Vargas R; Zaher AR; Ismail HA; Lee C; Cox TC; Jheon AH
    Orthod Craniofac Res; 2019 May; 22 Suppl 1():113-119. PubMed ID: 31074150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation.
    Chen W; Gao B; Hao L; Zhu G; Jules J; MacDougall MJ; Wang J; Han X; Zhou X; Li YP
    J Periodontal Res; 2016 Oct; 51(5):647-60. PubMed ID: 26754272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.