These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36246218)

  • 1. Advance in remediated of heavy metals by soil microbial fuel cells: Mechanism and application.
    Sun Y; Wang H; Long X; Xi H; Biao P; Yang W
    Front Microbiol; 2022; 13():997732. PubMed ID: 36246218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Potential of Microbial Fuel Cells for Remediation of Heavy Metals from Soil and Water-Review of Application.
    Fang C; Achal V
    Microorganisms; 2019 Dec; 7(12):. PubMed ID: 31847277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectrochemical remediation of Cr(VI)/Cd(II)-contaminated soil in bipolar membrane microbial fuel cells.
    Wang H; Zhang H; Zhang X; Li Q; Cheng C; Shen H; Zhang Z
    Environ Res; 2020 Jul; 186():109582. PubMed ID: 32361081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms and challenges of microbial fuel cells for soil heavy metal(loid)s remediation.
    Gustave W; Yuan Z; Liu F; Chen Z
    Sci Total Environ; 2021 Feb; 756():143865. PubMed ID: 33293085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous enhancement of heavy metal removal and electricity generation in soil microbial fuel cell.
    Zhang J; Cao X; Wang H; Long X; Li X
    Ecotoxicol Environ Saf; 2020 Apr; 192():110314. PubMed ID: 32061983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cathode/anode electron accumulation on soil microbial fuel cell power generation and heavy metal removal.
    Zhang J; Sun Y; Zhang H; Cao X; Wang H; Li X
    Environ Res; 2021 Jul; 198():111217. PubMed ID: 33974843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.
    Habibul N; Hu Y; Sheng GP
    J Hazard Mater; 2016 Nov; 318():9-14. PubMed ID: 27388419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of microbial fuel cell technology to the remediation of compound heavy metal contamination in soil.
    Zhang J; Jiao W; Huang S; Wang H; Cao X; Li X; Sakamaki T
    J Environ Manage; 2022 Oct; 320():115670. PubMed ID: 35921747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in soil microbial fuel cells for soil contaminants remediation.
    Abbas SZ; Rafatullah M
    Chemosphere; 2021 Jun; 272():129691. PubMed ID: 33573807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of soil type on heavy metals removal in bioelectrochemical system.
    Zhang J; Liu Y; Sun Y; Wang H; Cao X; Li X
    Bioelectrochemistry; 2020 Dec; 136():107596. PubMed ID: 32679338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous copper migration and removal from soil and water using a three-chamber microbial fuel cell.
    Zhang J; Wang H; Zhou X; Cao X; Li X
    Environ Technol; 2021 Dec; 42(28):4519-4527. PubMed ID: 32404026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Enhanced Electrokinetic Remediation of Heavy Metals Contaminated Soils by Stainless Steel Electrodes as well as the Phenomenon and Mechanism of Electrode Corrosion and Crystallization].
    Wen DD; Fu RB; Zhang W; Gu YY
    Huan Jing Ke Xue; 2017 Mar; 38(3):1209-1217. PubMed ID: 29965596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production.
    Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S
    Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Optimization of electrode configuration in soil electrokinetic remediation].
    Liu F; Fu RB; Xu Z
    Huan Jing Ke Xue; 2015 Feb; 36(2):678-85. PubMed ID: 26031098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic remediation of Cr(VI) contaminated soil by iron-loaded activated carbon in two-chamber microbial fuel cells.
    Wang H; Liu J; Gui C; Yan Q; Wang L; Wang S; Li J
    Environ Res; 2022 May; 208():112707. PubMed ID: 35007538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.
    Xu YS; Zheng T; Yong XY; Zhai DD; Si RW; Li B; Yu YY; Yong YC
    Bioresour Technol; 2016 Jul; 211():542-7. PubMed ID: 27038263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability.
    Wang Y; Li A; Cui C
    Chemosphere; 2021 Feb; 265():129071. PubMed ID: 33248732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shift of bacterial communities in heavy metal-contaminated agricultural land during a remediation process.
    Huang CC; Liang CM; Yang TI; Chen JL; Wang WK
    PLoS One; 2021; 16(7):e0255137. PubMed ID: 34297781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the recovery of heavy metal ions using two microbial fuel cells operating in parallel with no power output.
    Wang X; Li J; Wang Z; Tursun H; Liu R; Gao Y; Li Y
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20368-20377. PubMed ID: 27449020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.
    Derakhshan Nejad Z; Jung MC; Kim KH
    Environ Geochem Health; 2018 Jun; 40(3):927-953. PubMed ID: 28447234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.