These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36246370)

  • 1. Corrigendum: Combining metabolic engineering and multiplexed screening methods for 3-hydroxypropionic acid production in
    Fina A; Heux S; Albiol J; Ferrer P
    Front Bioeng Biotechnol; 2022; 10():1003012. PubMed ID: 36246370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Metabolic Engineering and Multiplexed Screening Methods for 3-Hydroxypropionic Acid Production in
    Fina A; Heux S; Albiol J; Ferrer P
    Front Bioeng Biotechnol; 2022; 10():942304. PubMed ID: 35935509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking recombinant Pichia pastoris for 3-hydroxypropionic acid production from glycerol.
    Fina A; Brêda GC; Pérez-Trujillo M; Freire DMG; Almeida RV; Albiol J; Ferrer P
    Microb Biotechnol; 2021 Jul; 14(4):1671-1682. PubMed ID: 34081409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing 3-hydroxypropionic acid production in combination with sugar supply engineering by cell surface-display and metabolic engineering of Schizosaccharomyces pombe.
    Takayama S; Ozaki A; Konishi R; Otomo C; Kishida M; Hirata Y; Matsumoto T; Tanaka T; Kondo A
    Microb Cell Fact; 2018 Nov; 17(1):176. PubMed ID: 30424766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway.
    Nguyen DTN; Lee OK; Lim C; Lee J; Na JG; Lee EY
    Metab Eng; 2020 May; 59():142-150. PubMed ID: 32061966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Engineering of Yeast for the Production of 3-Hydroxypropionic Acid.
    Ji RY; Ding Y; Shi TQ; Lin L; Huang H; Gao Z; Ji XJ
    Front Microbiol; 2018; 9():2185. PubMed ID: 30298059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Progress in metabolic engineering of biosynthesis of 3-hydroxypropionic acid].
    Zhan Y; Zhao R; Cui H; Li H; Song Z; Liu C
    Sheng Wu Gong Cheng Xue Bao; 2020 Jun; 36(6):1101-1112. PubMed ID: 32597060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.
    de Lima PB; Mulder KC; Melo NT; Carvalho LS; Menino GS; Mulinari E; de Castro VH; Dos Reis TF; Goldman GH; Magalhães BS; Parachin NS
    Microb Cell Fact; 2016 Sep; 15(1):158. PubMed ID: 27634467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Asymptotic Analysis of the Malonyl-CoA Route to 3-Hydroxypropionic Acid in Genetically Engineered Microbes.
    Dalwadi MP; King JR
    Bull Math Biol; 2020 Mar; 82(3):36. PubMed ID: 32140941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli.
    Tokuyama K; Toya Y; Matsuda F; Cress BF; Koffas MAG; Shimizu H
    Metab Eng; 2019 Mar; 52():215-223. PubMed ID: 30529031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening Phosphorylation Site Mutations in Yeast Acetyl-CoA Carboxylase Using Malonyl-CoA Sensor to Improve Malonyl-CoA-Derived Product.
    Chen X; Yang X; Shen Y; Hou J; Bao X
    Front Microbiol; 2018; 9():47. PubMed ID: 29422886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism.
    Zhang Q; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Su X; Huang H; Yao B; Bai Y; Zhang J
    Microb Cell Fact; 2022 Jun; 21(1):112. PubMed ID: 35659241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances, challenges and metabolic engineering strategies in the biosynthesis of 3-hydroxypropionic acid.
    Liang B; Sun G; Zhang X; Nie Q; Zhao Y; Yang J
    Biotechnol Bioeng; 2022 Oct; 119(10):2639-2668. PubMed ID: 35781640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox Engineering by Ectopic Overexpression of NADH Kinase in Recombinant Pichia pastoris (
    Tomàs-Gamisans M; Andrade CCP; Maresca F; Monforte S; Ferrer P; Albiol J
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31757828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Expression Modulation of the Key Enzyme Acc for Highly Efficient 3-Hydroxypropionic Acid Production.
    Wang S; Jin X; Jiang W; Wang Q; Qi Q; Liang Q
    Front Microbiol; 2022; 13():902848. PubMed ID: 35633674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Pichia pastoris.
    Peña DA; Gasser B; Zanghellini J; Steiger MG; Mattanovich D
    Metab Eng; 2018 Nov; 50():2-15. PubMed ID: 29704654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review.
    Yang Z; Zhang Z
    Biotechnol Adv; 2018; 36(1):182-195. PubMed ID: 29129652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris.
    Weninger A; Hatzl AM; Schmid C; Vogl T; Glieder A
    J Biotechnol; 2016 Oct; 235():139-49. PubMed ID: 27015975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered
    Kildegaard KR; Wang Z; Chen Y; Nielsen J; Borodina I
    Metab Eng Commun; 2015 Dec; 2():132-136. PubMed ID: 34150516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.