These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36246373)

  • 1. Regulatory frameworks can facilitate or hinder the potential for genome editing to contribute to sustainable agricultural development.
    Mbaya H; Lillico S; Kemp S; Simm G; Raybould A
    Front Bioeng Biotechnol; 2022; 10():959236. PubMed ID: 36246373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principles of Nanoparticle Design for Genome Editing in Plants.
    Sharma P; Lew TTS
    Front Genome Ed; 2022; 4():846624. PubMed ID: 35330692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plants Developed by New Genetic Modification Techniques-Comparison of Existing Regulatory Frameworks in the EU and Non-EU Countries.
    Eckerstorfer MF; Engelhard M; Heissenberger A; Simon S; Teichmann H
    Front Bioeng Biotechnol; 2019; 7():26. PubMed ID: 30838207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security.
    Fiaz S; Ahmar S; Saeed S; Riaz A; Mora-Poblete F; Jung KH
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene Editing Regulation and Innovation Economics.
    Whelan AI; Gutti P; Lema MA
    Front Bioeng Biotechnol; 2020; 8():303. PubMed ID: 32363186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards progressive regulatory approaches for agricultural applications of animal biotechnology.
    Hallerman EM; Bredlau JP; Camargo LSA; Dagli MLZ; Karembu M; Ngure G; Romero-Aldemita R; Rocha-Salavarrieta PJ; Tizard M; Walton M; Wray-Cahen D
    Transgenic Res; 2022 Apr; 31(2):167-199. PubMed ID: 35000100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective.
    Zhang D; Hussain A; Manghwar H; Xie K; Xie S; Zhao S; Larkin RM; Qing P; Jin S; Ding F
    Plant Biotechnol J; 2020 Aug; 18(8):1651-1669. PubMed ID: 32271968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina.
    Whelan AI; Lema MA
    GM Crops Food; 2015; 6(4):253-65. PubMed ID: 26552666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next biotechnological plants for addressing global challenges: The contribution of transgenesis and new breeding techniques.
    Ricroch AE; Martin-Laffon J; Rault B; Pallares VC; Kuntz M
    N Biotechnol; 2022 Jan; 66():25-35. PubMed ID: 34537403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normative Criteria and Their Inclusion in a Regulatory Framework for New Plant Varieties Derived From Genome Editing.
    Hamburger DJS
    Front Bioeng Biotechnol; 2018; 6():176. PubMed ID: 30619841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective.
    Okoli AS; Blix T; Myhr AI; Xu W; Xu X
    Transgenic Res; 2022 Feb; 31(1):1-21. PubMed ID: 34304349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering.
    Huang TK; Puchta H
    Transgenic Res; 2021 Aug; 30(4):529-549. PubMed ID: 33646511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of the EU GMO regulatory framework for plant genome editing.
    Hundleby PAC; Harwood WA
    Food Energy Secur; 2019 May; 8(2):e00161. PubMed ID: 31423300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New breeding technique "genome editing" for crop improvement: applications, potentials and challenges.
    Aglawe SB; Barbadikar KM; Mangrauthia SK; Madhav MS
    3 Biotech; 2018 Aug; 8(8):336. PubMed ID: 30073121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling Trade in Gene-Edited Produce in Asia and Australasia: The Developing Regulatory Landscape and Future Perspectives.
    Jones MGK; Fosu-Nyarko J; Iqbal S; Adeel M; Romero-Aldemita R; Arujanan M; Kasai M; Wei X; Prasetya B; Nugroho S; Mewett O; Mansoor S; Awan MJA; Ordonio RL; Rao SR; Poddar A; Hundleby P; Iamsupasit N; Khoo K
    Plants (Basel); 2022 Sep; 11(19):. PubMed ID: 36235403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing in Cereals: Approaches, Applications and Challenges.
    Ansari WA; Chandanshive SU; Bhatt V; Nadaf AB; Vats S; Katara JL; Sonah H; Deshmukh R
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Biotechnological Tools for the Genetic Improvement of Major Woody Fruit Species.
    Limera C; Sabbadini S; Sweet JB; Mezzetti B
    Front Plant Sci; 2017; 8():1418. PubMed ID: 28861099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory and Policy Considerations Around Genome Editing in Agriculture.
    Friedrichs S; Ludlow K; Kearns P
    Methods Mol Biol; 2022; 2495():327-366. PubMed ID: 35696041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Editing in Agriculture: Technical and Practical Considerations.
    Jansing J; Schiermeyer A; Schillberg S; Fischer R; Bortesi L
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31200517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.