These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36246524)

  • 1. Response properties of spiking and non-spiking brain neurons mirror pulse interval selectivity.
    Zhang X; Hedwig B
    Front Cell Neurosci; 2022; 16():1010740. PubMed ID: 36246524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound processing in the cricket brain: evidence for a pulse duration filter.
    Zhang X; Hedwig B
    J Neurophysiol; 2023 Oct; 130(4):953-966. PubMed ID: 37701942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior.
    Kostarakos K; Hedwig B
    J Neurosci; 2012 Jul; 32(28):9601-12. PubMed ID: 22787046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential Filtering Processes Shape Feature Detection in Crickets: A Framework for Song Pattern Recognition.
    Hedwig BG
    Front Physiol; 2016; 7():46. PubMed ID: 26941647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An auditory-responsive interneuron descending from the cricket brain: a new element in the auditory pathway.
    Rogers SM; Kostarakos K; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Nov; 208(5-6):571-589. PubMed ID: 36208310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An auditory feature detection circuit for sound pattern recognition.
    Schöneich S; Kostarakos K; Hedwig B
    Sci Adv; 2015 Sep; 1(8):e1500325. PubMed ID: 26601259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism.
    Hedwig B; Sarmiento-Ponce EJ
    Proc Biol Sci; 2017 May; 284(1855):. PubMed ID: 28539524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking.
    Zorović M; Hedwig B
    J Neurophysiol; 2011 May; 105(5):2181-94. PubMed ID: 21346206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular timer networks: abdominal interneurons controlling the chirp and pulse pattern in a cricket calling song.
    Jacob PF; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Nov; 206(6):921-938. PubMed ID: 33089402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonotactic steering and representation of directional information in the ascending auditory pathway of a cricket.
    Lv M; Zhang X; Hedwig B
    J Neurophysiol; 2020 Mar; 123(3):865-875. PubMed ID: 31913780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state.
    Hedwig B
    J Neurophysiol; 2000 Feb; 83(2):712-22. PubMed ID: 10669487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.
    Nabatiyan A; Poulet JF; de Polavieja GG; Hedwig B
    J Neurophysiol; 2003 Oct; 90(4):2484-93. PubMed ID: 14534273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).
    Ostrowski TD; Stumpner A
    J Comp Neurol; 2010 Aug; 518(15):3101-16. PubMed ID: 20533362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postsynaptic inhibition mediates high-frequency selectivity in the cricket Teleogryllus oceanicus: implications for flight phonotaxis behavior.
    Nolen TG; Hoy RR
    J Neurosci; 1987 Jul; 7(7):2081-96. PubMed ID: 3612230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective phonotaxis to high sound-pulse rate in the cricket Gryllus assimilis.
    Pollack GS; Kim JS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Apr; 199(4):285-93. PubMed ID: 23322447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):423-39. PubMed ID: 3783496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Descending brain neurons in the cricket Gryllus bimaculatus (de Geer): auditory responses and impact on walking.
    Zorović M; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Jan; 199(1):25-34. PubMed ID: 23104703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern recognition in field crickets: concepts and neural evidence.
    Kostarakos K; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jan; 201(1):73-85. PubMed ID: 25348550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical song features for auditory pattern recognition in crickets.
    Meckenhäuser G; Hennig RM; Nawrot MP
    PLoS One; 2013; 8(2):e55349. PubMed ID: 23437054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, Activity and Function of a Singing CPG Interneuron Controlling Cricket Species-Specific Acoustic Signaling.
    Jacob PF; Hedwig B
    J Neurosci; 2019 Jan; 39(1):96-111. PubMed ID: 30396914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.