BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36246666)

  • 1. CD47KO/CRT dual-bioengineered cell membrane-coated nanovaccine combined with anti-PD-L1 antibody for boosting tumor immunotherapy.
    Liu S; Wu J; Feng Y; Guo X; Li T; Meng M; Chen J; Chen D; Tian H
    Bioact Mater; 2023 Apr; 22():211-224. PubMed ID: 36246666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A generally minimalist strategy of constructing biomineralized high-efficiency personalized nanovaccine combined with immune checkpoint blockade for cancer immunotherapy.
    Zhang S; Feng Y; Meng M; Li Z; Li H; Lin L; Xu C; Chen J; Hao K; Tang Z; Tian H; Chen X
    Biomaterials; 2022 Oct; 289():121794. PubMed ID: 36113330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Enhanced Antitumor Immunity by a Three-Barreled Strategy of the l-Arginine-Promoted Nanovaccine and Gene-Mediated PD-L1 Blockade.
    Hu Y; Lin L; Chen J; Hao K; Zhang S; Guo X; Guo Z; Tian H; Chen X
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41127-41137. PubMed ID: 32808767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase.
    Guan X; Chen J; Hu Y; Lin L; Sun P; Tian H; Chen X
    Biomaterials; 2018 Jul; 171():198-206. PubMed ID: 29698869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy.
    Jiang M; Zhao L; Cui X; Wu X; Zhang Y; Guan X; Ma J; Zhang W
    J Adv Res; 2022 Jan; 35():49-60. PubMed ID: 35003793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-PD-L1 antibody.
    Li Z; Cai H; Li Z; Ren L; Ma X; Zhu H; Gong Q; Zhang H; Gu Z; Luo K
    Bioact Mater; 2023 Mar; 21():299-312. PubMed ID: 36157245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimalist Nanovaccine with Optimized Amphiphilic Copolymers for Cancer Immunotherapy.
    Niu L; Miao Y; Cao Z; Wei T; Zhu J; Li M; Bai B; Chen L; Liu N; Pan F; Zhu J; Wang C; Yang Y; Chen Q
    ACS Nano; 2024 Jan; 18(4):3349-3361. PubMed ID: 38230639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Membrane Nanovaccines Combined with Immune Checkpoint Blockade to Enhance Cancer Immunotherapy.
    Zhao P; Xu Y; Ji W; Li L; Qiu L; Zhou S; Qian Z; Zhang H
    Int J Nanomedicine; 2022; 17():73-89. PubMed ID: 35027827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic tumor immunological strategy by combining tumor nanovaccine with gene-mediated extracellular matrix scavenger.
    Hu Y; Lin L; Chen J; Maruyama A; Tian H; Chen X
    Biomaterials; 2020 Sep; 252():120114. PubMed ID: 32422491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy.
    Chen J; Fang H; Hu Y; Wu J; Zhang S; Feng Y; Lin L; Tian H; Chen X
    Bioact Mater; 2022 Jan; 7():167-180. PubMed ID: 34466725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of Sunitinib and PD-L1 Blockade Enhances Anticancer Efficacy of TLR7/8 Agonist-Based Nanovaccine.
    Kim H; Khanna V; Kucaba TA; Zhang W; Ferguson DM; Griffith TS; Panyam J
    Mol Pharm; 2019 Mar; 16(3):1200-1210. PubMed ID: 30620878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Visible Codelivery Nanovaccine of Antigen and Adjuvant with Self-Carrier for Cancer Immunotherapy.
    Dong X; Liang J; Yang A; Qian Z; Kong D; Lv F
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4876-4888. PubMed ID: 30628437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of immune checkpoint blockade and targeted gene regulation of angiogenesis for facilitating antitumor immunotherapy.
    Zhan J; Zhang M; Zhou L; He C
    Front Bioeng Biotechnol; 2023; 11():1065773. PubMed ID: 36994358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalized Nanovaccine Coated with Calcinetin-Expressed Cancer Cell Membrane Antigen for Cancer Immunotherapy.
    Xiong X; Zhao J; Pan J; Liu C; Guo X; Zhou S
    Nano Lett; 2021 Oct; 21(19):8418-8425. PubMed ID: 34546061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Necroptotic cancer cells-mimicry nanovaccine boosts anti-tumor immunity with tailored immune-stimulatory modality.
    Kang T; Huang Y; Zhu Q; Cheng H; Pei Y; Feng J; Xu M; Jiang G; Song Q; Jiang T; Chen H; Gao X; Chen J
    Biomaterials; 2018 May; 164():80-97. PubMed ID: 29499438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential and Timely Combination of a Cancer Nanovaccine with Immune Checkpoint Blockade Effectively Inhibits Tumor Growth and Relapse.
    Kim Y; Kang S; Shin H; Kim T; Yu B; Kim J; Yoo D; Jon S
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14628-14638. PubMed ID: 32430981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy.
    Xu J; Wang H; Xu L; Chao Y; Wang C; Han X; Dong Z; Chang H; Peng R; Cheng Y; Liu Z
    Biomaterials; 2019 Jul; 207():1-9. PubMed ID: 30947117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic anti-tumor efficacy of a hollow mesoporous silica-based cancer vaccine and an immune checkpoint inhibitor at the local site.
    Wang X; Li X; Ito A; Sogo Y; Ohno T
    Acta Biomater; 2022 Jun; 145():235-245. PubMed ID: 35398544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Cocktail Nanovaccine for Cancer Immunotherapy.
    Liu M; Xie D; Hu D; Zhang R; Wang Y; Tang L; Zhou B; Zhao B; Yang L
    Adv Sci (Weinh); 2023 Nov; 10(31):e2207697. PubMed ID: 37740439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-PD-L1 peptide-conjugated prodrug nanoparticles for targeted cancer immunotherapy combining PD-L1 blockade with immunogenic cell death.
    Moon Y; Shim MK; Choi J; Yang S; Kim J; Yun WS; Cho H; Park JY; Kim Y; Seong JK; Kim K
    Theranostics; 2022; 12(5):1999-2014. PubMed ID: 35265195
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.