These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36246780)
1. Enhanced age-hardening response and creep resistance of an Al-0.5Mn-0.3Si (at.%) alloy by Sn inoculation. Farkoosh AR; Dunand DC; Seidman DN Acta Mater; 2022 Nov; 240():. PubMed ID: 36246780 [TBL] [Abstract][Full Text] [Related]
2. Solute-induced strengthening during creep of an aged-hardened Al-Mn-Zr alloy. Farkoosh AR; Dunand DC; Seidman DN Acta Mater; 2021 Oct; 219():. PubMed ID: 36247868 [TBL] [Abstract][Full Text] [Related]
3. Ambient- and elevated temperature properties of Sc- and Zr-modified Al-6Ni alloys strengthened by Al Suwanpreecha C; Rakhmonov JU; Chankitmunkong S; Pandee P; Dunand DC; Limmaneevichitr C Mater Sci Eng A Struct Mater; 2022 Apr; 841():. PubMed ID: 36440181 [TBL] [Abstract][Full Text] [Related]
4. A Study of the Effect of 2 at.% Sn on the Microstructure and Isothermal Oxidation at 800 and 1200 °C of Nb-24Ti-18Si-Based Alloys with Al and/or Cr Additions. Xu Z; Utton C; Tsakiropoulos P Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30257519 [TBL] [Abstract][Full Text] [Related]
5. Precipitation Kinetics of Water-Cooled Copper Mold Al-Mg-Si(-Mn, Zr) Alloy during Aging. Shen H; Shi J; Zhou Y; Wang X; Yao G Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068168 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Elevated-Temperature Strength and Creep Resistance of Dispersion-Strengthened Al-Mg-Si-Mn AA6082 Alloys through Modified Processing Route. Rakhmonov J; Liu K; Rometsch P; Parson N; Chen XG Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639888 [TBL] [Abstract][Full Text] [Related]
7. Comparing evolution of precipitates and strength upon aging of cast and laser-remelted Al-8Ce-0.2Sc-0.1Zr (wt.%). Rakhmonov JU; Weiss D; Dunand DC Mater Sci Eng A Struct Mater; 2022 Apr; 840():. PubMed ID: 36439899 [TBL] [Abstract][Full Text] [Related]
9. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates. Song G; Sun Z; Li L; Xu X; Rawlings M; Liebscher CH; Clausen B; Poplawsky J; Leonard DN; Huang S; Teng Z; Liu CT; Asta MD; Gao Y; Dunand DC; Ghosh G; Chen M; Fine ME; Liaw PK Sci Rep; 2015 Nov; 5():16327. PubMed ID: 26548303 [TBL] [Abstract][Full Text] [Related]
10. Effect of a Trace Addition of Sn on the Aging Behavior of Al-Mg-Si Alloy with a Different Mg/Si Ratio. Ma L; Tang J; Tu W; Ye L; Jiang H; Zhan X; Zhao J Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32092875 [TBL] [Abstract][Full Text] [Related]
11. Influence of Zn and Sn on the Precipitation Behavior of New Al-Mg-Si Alloys. Glöckel F; Uggowitzer PJ; Felfer P; Pogatscher S; Höppel HW Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31405097 [TBL] [Abstract][Full Text] [Related]
12. Precipitation Hardening at Elevated Temperatures above 400 °C and Subsequent Natural Age Hardening of Commercial Al-Si-Cu Alloy. Li R; Takata N; Suzuki A; Kobashi M; Okada Y; Furukawa Y Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885308 [TBL] [Abstract][Full Text] [Related]
13. Effects of Cu Addition on Age Hardening Behavior and Mechanical Properties of High-Strength Al-1.2Mg-1.2Si Alloy. Zhang X; Yan L; Li Z; Li X; Gao G; Yan H; Wen K; Zhang Y; Xiong B Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109962 [TBL] [Abstract][Full Text] [Related]
14. Atom Probe Tomographic Characterization of Nanoscale Cu-Rich Precipitates in 17-4 Precipitate Hardened Stainless Steel Tempered at Different Temperatures. Wang Z; Fang X; Li H; Liu W Microsc Microanal; 2017 Apr; 23(2):340-349. PubMed ID: 28300016 [TBL] [Abstract][Full Text] [Related]
15. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822 [TBL] [Abstract][Full Text] [Related]
16. Modulation of Multiple Precipitates for High Strength and Ductility in Al-Cu-Mn Alloy. Liu L; Wang Z; Wu Q; Yang Z; Zhou K; Fan X; Li J; Wang J Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885537 [TBL] [Abstract][Full Text] [Related]
17. Effect of Cu Addition on the Precipitation Hardening and Mechanical Properties of Al-Mg Based Cast Alloys. Wahid SA; Ha SH; Kim BH; Yoon YO; Lim HK; Kim SK J Nanosci Nanotechnol; 2021 Mar; 21(3):1943-1947. PubMed ID: 33404473 [TBL] [Abstract][Full Text] [Related]
18. Effect of Al Content on Microstructure and Properties of Al Li R; Li Q; Zhang Z; Zhang R; Xing Y; Han D Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920444 [TBL] [Abstract][Full Text] [Related]
19. Atomic Structure of Hardening Precipitates in Al-Mg-Si Alloys: Influence of Minor Additions of Cu and Zn. Bartawi EH; Marioara CD; Shaban G; Hatzoglou C; Holmestad R; Ambat R ACS Nano; 2023 Dec; 17(23):24115-24129. PubMed ID: 38010110 [TBL] [Abstract][Full Text] [Related]
20. Nanoprecipitates to Enhance Radiation Tolerance in High-Entropy Alloys. Kombaiah B; Zhou Y; Jin K; Manzoor A; Poplawsky JD; Aguiar JA; Bei H; Aidhy DS; Edmondson PD; Zhang Y ACS Appl Mater Interfaces; 2023 Jan; 15(3):3912-3924. PubMed ID: 36623205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]