BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 36246943)

  • 1. A Joint Multitask Learning Model for Cross-sectional and Longitudinal Predictions of Visual Field Using OCT.
    Asaoka R; Xu L; Murata H; Kiwaki T; Matsuura M; Fujino Y; Tanito M; Mori K; Ikeda Y; Kanamoto T; Inoue K; Yamagami J; Yamanishi K
    Ophthalmol Sci; 2021 Dec; 1(4):100055. PubMed ID: 36246943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression.
    Xu L; Asaoka R; Murata H; Kiwaki T; Zheng Y; Matsuura M; Fujino Y; Tanito M; Mori K; Ikeda Y; Kanamoto T; Yamanishi K
    Ophthalmol Glaucoma; 2021; 4(1):78-88. PubMed ID: 32791238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression.
    Xu L; Asaoka R; Kiwaki T; Murata H; Fujino Y; Matsuura M; Hashimoto Y; Asano S; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K
    Am J Ophthalmol; 2020 Oct; 218():304-313. PubMed ID: 32387432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma.
    Hashimoto Y; Asaoka R; Kiwaki T; Sugiura H; Asano S; Murata H; Fujino Y; Matsuura M; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K
    Br J Ophthalmol; 2021 Apr; 105(4):507-513. PubMed ID: 32593978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting 10-2 Visual Field From Optical Coherence Tomography in Glaucoma Using Deep Learning Corrected With 24-2/30-2 Visual Field.
    Hashimoto Y; Kiwaki T; Sugiura H; Asano S; Murata H; Fujino Y; Matsuura M; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K; Asaoka R
    Transl Vis Sci Technol; 2021 Nov; 10(13):28. PubMed ID: 34812893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT.
    Christopher M; Bowd C; Proudfoot JA; Belghith A; Goldbaum MH; Rezapour J; Fazio MA; Girkin CA; De Moraes G; Liebmann JM; Weinreb RN; Zangwill LM
    Ophthalmology; 2021 Nov; 128(11):1534-1548. PubMed ID: 33901527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the central 10 degrees visual field in glaucoma by applying a deep learning algorithm to optical coherence tomography images.
    Asano S; Asaoka R; Murata H; Hashimoto Y; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K
    Sci Rep; 2021 Jan; 11(1):2214. PubMed ID: 33500462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy.
    Xiong J; Li F; Song D; Tang G; He J; Gao K; Zhang H; Cheng W; Song Y; Lin F; Hu K; Wang P; Olivia Li JP; Aung T; Qiao Y; Zhang X; Ting D
    Ophthalmology; 2022 Feb; 129(2):171-180. PubMed ID: 34339778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmenting Kalman Filter Machine Learning Models with Data from OCT to Predict Future Visual Field Loss: An Analysis Using Data from the African Descent and Glaucoma Evaluation Study and the Diagnostic Innovation in Glaucoma Study.
    Zhalechian M; Van Oyen MP; Lavieri MS; De Moraes CG; Girkin CA; Fazio MA; Weinreb RN; Bowd C; Liebmann JM; Zangwill LM; Andrews CA; Stein JD
    Ophthalmol Sci; 2022 Mar; 2(1):100097. PubMed ID: 36246178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps.
    Christopher M; Bowd C; Belghith A; Goldbaum MH; Weinreb RN; Fazio MA; Girkin CA; Liebmann JM; Zangwill LM
    Ophthalmology; 2020 Mar; 127(3):346-356. PubMed ID: 31718841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations between Steady-State Pattern Electroretinogram and Humphrey Visual Field Analyzer Global Indices and Their Associations with Retinal Ganglion Cell Layer-Inner Plexiform Layer Thickness in Glaucoma Suspects.
    Tirsi A; Gliagias V; Zhu D; Wong B; Gupta R; Park SC; Obstbaum S; Tello C
    J Ophthalmol; 2024; 2024():2443887. PubMed ID: 38500553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss.
    Yarmohammadi A; Zangwill LM; Manalastas PIC; Fuller NJ; Diniz-Filho A; Saunders LJ; Suh MH; Hasenstab K; Weinreb RN
    Ophthalmology; 2018 Apr; 125(4):578-587. PubMed ID: 29174012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of visual field from swept-source optical coherence tomography using deep learning algorithms.
    Park K; Kim J; Kim S; Shin J
    Graefes Arch Clin Exp Ophthalmol; 2020 Nov; 258(11):2489-2499. PubMed ID: 32845372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual Field Prediction: Evaluating the Clinical Relevance of Deep Learning Models.
    Eslami M; Kim JA; Zhang M; Boland MV; Wang M; Chang DS; Elze T
    Ophthalmol Sci; 2023 Mar; 3(1):100222. PubMed ID: 36325476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning.
    Hemelings R; Elen B; Barbosa-Breda J; Bellon E; Blaschko MB; De Boever P; Stalmans I
    Transl Vis Sci Technol; 2022 Aug; 11(8):22. PubMed ID: 35998059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Humphrey 10-2 visual field from 24-2 visual field in eyes with advanced glaucoma.
    Sugisaki K; Asaoka R; Inoue T; Yoshikawa K; Kanamori A; Yamazaki Y; Ishikawa S; Nemoto H; Iwase A; Araie M
    Br J Ophthalmol; 2020 May; 104(5):642-647. PubMed ID: 31481390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the Extent of Damage in the Humphrey Field Analyzer 24-2 Visual Fields Using 10-2 Test Results in Patients With Advanced Glaucoma.
    Asaoka R; Sugisaki K; Inoue T; Yoshikawa K; Kanamori A; Yamazaki Y; Ishikawa S; Uchida K; Iwase A; Araie M;
    Transl Vis Sci Technol; 2024 Feb; 13(2):2. PubMed ID: 38306105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.
    Medeiros FA; Jammal AA; Thompson AC
    Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multicenter Comparison of the Toronto Portable Perimeter with the Humphrey Field Analyzer: A Pilot Study.
    Ahmed Y; Pereira A; Bowden S; Shi RB; Li Y; Ahmed IIK; Arshinoff SA
    Ophthalmol Glaucoma; 2022; 5(2):146-159. PubMed ID: 34358734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Visual Fields From Optical Coherence Tomography via an Ensemble of Deep Representation Learners.
    Lazaridis G; Montesano G; Afgeh SS; Mohamed-Noriega J; Ourselin S; Lorenzi M; Garway-Heath DF
    Am J Ophthalmol; 2022 Jun; 238():52-65. PubMed ID: 34998718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.