BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36247088)

  • 1. Glucose Determination by a Single 1535 nm Pulsed Photoacoustic Technique: A Multiple Calibration for the External Factors.
    Yang L; Chen C; Zhang Z; Wei X
    J Healthc Eng; 2022; 2022():9593843. PubMed ID: 36247088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system.
    Pai PP; Sanki PK; Sarangi S; Banerjee S
    Rev Sci Instrum; 2015 Jun; 86(6):064901. PubMed ID: 26133859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration of Quartz-Enhanced Photoacoustic Sensors for Real-Life Adaptation.
    Christensen JB; Balslev-Harder D; Nielsen L; Petersen JC; Lassen M
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33503854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Non-Invasive Detection of Blood Glucose Concentration Based on Photoacoustic Spectroscopy Combined with Principle Component Regression Method].
    Ren Z; Liu GD; Huang Z; Xiong ZH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1674-9. PubMed ID: 30052370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of absorption coefficients by pulsed laser induced photoacoustic measurements.
    Priya M; Satish Rao BS; Ray S; Mahato KK
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jun; 127():85-90. PubMed ID: 24632160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration-free absolute quantification of particle concentration by statistical analyses of photoacoustic signals in vivo.
    Zhou Y; Yao J; Maslov KI; Wang LV
    J Biomed Opt; 2014 Mar; 19(3):37001. PubMed ID: 24589987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser photoacoustic determination of physiological glucose concentrations in human whole blood.
    Christison GB; MacKenzie HA
    Med Biol Eng Comput; 1993 May; 31(3):284-90. PubMed ID: 8412382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of aqueous glucose based on a cavity size- and optical-wavelength-independent continuous-wave photoacoustic technique.
    Camou S; Haga T; Tajima T; Tamechika E
    Anal Chem; 2012 Jun; 84(11):4718-24. PubMed ID: 22548281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Difference Optimization of Dual-Wavelength Excitation for the CW-Photoacoustic-Based Noninvasive and Selective Investigation of Aqueous Solutions of Glucose.
    Camou S
    Sensors (Basel); 2015 Jul; 15(7):16358-71. PubMed ID: 26198230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose solution determination based on liquid photoacoustic resonance.
    Zhao S; Tao W; He Q; Zhao H; Yang H
    Appl Opt; 2017 Jan; 56(2):193-199. PubMed ID: 28085850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of long-period measurements using a small-sized photoacoustic cell for aqueous glucose monitoring.
    Wadamori N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1267-70. PubMed ID: 26736498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Guide Star" Assisted Noninvasive Photoacoustic Measurement of Glucose.
    Zhang R; Gao F; Feng X; Jin H; Zhang S; Liu S; Luo Y; Xing B; Zheng Y
    ACS Sens; 2018 Dec; 3(12):2550-2557. PubMed ID: 30484628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoacoustic spectroscopy that uses a resonant characteristic of a microphone for in vitro measurements of glucose concentration.
    Joo Yong Sim ; Chang-Geun Ahn ; Eunju Jeong ; Bong Kyu Kim
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4861-4864. PubMed ID: 28269359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2  MHz multi-wavelength pulsed laser for functional photoacoustic microscopy.
    Liang Y; Jin L; Guan BO; Wang L
    Opt Lett; 2017 Apr; 42(7):1452-1455. PubMed ID: 28362790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsed Laser Excited Photoacoustic Effect for Disease Diagnosis and Therapy.
    Wang Z; Zhan M; Hu X
    Chemistry; 2022 Jul; 28(37):e202200042. PubMed ID: 35420714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration.
    Wang P; Wang P; Wang HW; Cheng JX
    J Biomed Opt; 2012 Sep; 17(9):96010-1. PubMed ID: 23085911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy.
    Pleitez MA; Lieblein T; Bauer A; Hertzberg O; von Lilienfeld-Toal H; Mäntele W
    Anal Chem; 2013 Jan; 85(2):1013-20. PubMed ID: 23214424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring.
    Choi SS; Mandelis A; Guo X; Lashkari B; Kellnberger S; Ntziachristos V
    J Biophotonics; 2016 Apr; 9(4):388-95. PubMed ID: 25996635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustic correlation spectroscopy and its application to low-speed flow measurement.
    Chen SL; Ling T; Huang SW; Won Baac H; Guo LJ
    Opt Lett; 2010 Apr; 35(8):1200-2. PubMed ID: 20410966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.