These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 36247363)
1. The Spectral Species Concept in Living Color. Rocchini D; Santos MJ; Ustin SL; Féret JB; Asner GP; Beierkuhnlein C; Dalponte M; Feilhauer H; Foody GM; Geller GN; Gillespie TW; He KS; Kleijn D; Leitão PJ; Malavasi M; Moudrý V; Müllerová J; Nagendra H; Normand S; Ricotta C; Schaepman ME; Schmidtlein S; Skidmore AK; Šímová P; Torresani M; Townsend PA; Turner W; Vihervaara P; Wegmann M; Lenoir J J Geophys Res Biogeosci; 2022 Sep; 127(9):e2022JG007026. PubMed ID: 36247363 [TBL] [Abstract][Full Text] [Related]
2. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing. Hakkenberg CR; Zhu K; Peet RK; Song C Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965 [TBL] [Abstract][Full Text] [Related]
3. Multi-scale datasets for monitoring Mediterranean oak forests from optical remote sensing during the SENTHYMED/MEDOAK experiment in the north of Montpellier (France). Adeline K; Féret JB; Clenet H; Limousin JM; Ourcival JM; Mouillot F; Alleaume S; Jolivot A; Briottet X; Bidel L; Aria E; Defossez A; Gaubert T; Giffard-Carlet J; Kempf J; Longepierre D; Lopez F; Miraglio T; Vigouroux J; Debue M Data Brief; 2024 Apr; 53():110185. PubMed ID: 38406250 [TBL] [Abstract][Full Text] [Related]
4. The spatial sensitivity of the spectral diversity-biodiversity relationship: an experimental test in a prairie grassland. Wang R; Gamon JA; Cavender-Bares J; Townsend PA; Zygielbaum AI Ecol Appl; 2018 Mar; 28(2):541-556. PubMed ID: 29266500 [TBL] [Abstract][Full Text] [Related]
5. The potential of satellite greenness to predict plant diversity among wetland types, ecoregions, and disturbance levels. Taddeo S; Dronova I; Harris K Ecol Appl; 2019 Oct; 29(7):e01961. PubMed ID: 31240799 [TBL] [Abstract][Full Text] [Related]
6. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. Zomer RJ; Trabucco A; Ustin SL J Environ Manage; 2009 May; 90(7):2170-7. PubMed ID: 18395960 [TBL] [Abstract][Full Text] [Related]
8. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing. Hakkenberg CR; Peet RK; Urban DL; Song C Ecol Appl; 2018 Jan; 28(1):177-190. PubMed ID: 29024180 [TBL] [Abstract][Full Text] [Related]
9. In-situ and airborne hyperspectral data for detecting agricultural activities in a dense forest landscape. Rajesh CB; Kumar CVSSM; Jha SS; Ramachandran KI; Nidamanuri RR Data Brief; 2023 Oct; 50():109510. PubMed ID: 37663764 [TBL] [Abstract][Full Text] [Related]
10. Can tree species diversity be assessed with Landsat data in a temperate forest? Arekhi M; Yılmaz OY; Yılmaz H; Akyüz YF Environ Monit Assess; 2017 Oct; 189(11):586. PubMed ID: 29080961 [TBL] [Abstract][Full Text] [Related]
11. Classifying grass-dominated habitats from remotely sensed data: The influence of spectral resolution, acquisition time and the vegetation classification system on accuracy and thematic resolution. Bradter U; O'Connell J; Kunin WE; Boffey CWH; Ellis RJ; Benton TG Sci Total Environ; 2020 Apr; 711():134584. PubMed ID: 31818561 [TBL] [Abstract][Full Text] [Related]
12. Modelling avian biodiversity using raw, unclassified satellite imagery. St-Louis V; Pidgeon AM; Kuemmerle T; Sonnenschein R; Radeloff VC; Clayton MK; Locke BA; Bash D; Hostert P Philos Trans R Soc Lond B Biol Sci; 2014; 369(1643):20130197. PubMed ID: 24733952 [TBL] [Abstract][Full Text] [Related]
13. Land cover classification from multi-temporal, multi-spectral remotely sensed imagery using patch-based recurrent neural networks. Sharma A; Liu X; Yang X Neural Netw; 2018 Sep; 105():346-355. PubMed ID: 29933156 [TBL] [Abstract][Full Text] [Related]
14. Habitat heterogeneity captured by 30-m resolution satellite image texture predicts bird richness across the United States. Farwell LS; Elsen PR; Razenkova E; Pidgeon AM; Radeloff VC Ecol Appl; 2020 Dec; 30(8):e02157. PubMed ID: 32358975 [TBL] [Abstract][Full Text] [Related]
15. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites. Maynard JJ; Karl JW PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731 [TBL] [Abstract][Full Text] [Related]
16. A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape. Lausch A; Pause M; Merbach I; Zacharias S; Doktor D; Volk M; Seppelt R Environ Monit Assess; 2013 Feb; 185(2):1215-35. PubMed ID: 22527462 [TBL] [Abstract][Full Text] [Related]
17. [Application and prospects of hyperspectral remote sensing in monitoring plant diversity in grassland]. Gu C; Liang J; Liu XY; Sun BY; Sun TS; Yu JG; Sun CX; Wan HW; Gao JX Ying Yong Sheng Tai Xue Bao; 2024 May; 35(5):1397-1407. PubMed ID: 38886439 [TBL] [Abstract][Full Text] [Related]
18. Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Muller-Karger FE; Hestir E; Ade C; Turpie K; Roberts DA; Siegel D; Miller RJ; Humm D; Izenberg N; Keller M; Morgan F; Frouin R; Dekker AG; Gardner R; Goodman J; Schaeffer B; Franz BA; Pahlevan N; Mannino AG; Concha JA; Ackleson SG; Cavanaugh KC; Romanou A; Tzortziou M; Boss ES; Pavlick R; Freeman A; Rousseaux CS; Dunne J; Long MC; Klein E; McKinley GA; Goes J; Letelier R; Kavanaugh M; Roffer M; Bracher A; Arrigo KR; Dierssen H; Zhang X; Davis FW; Best B; Guralnick R; Moisan J; Sosik HM; Kudela R; Mouw CB; Barnard AH; Palacios S; Roesler C; Drakou EG; Appeltans W; Jetz W Ecol Appl; 2018 Apr; 28(3):749-760. PubMed ID: 29509310 [TBL] [Abstract][Full Text] [Related]