These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36247533)

  • 1. Integration of mRNA and miRNA analysis reveals the differentially regulatory network in two different
    He Z; Liu C; Zhang Z; Wang R; Chen Y
    Front Plant Sci; 2022; 13():1001357. PubMed ID: 36247533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf Transcriptome and Weight Gene Co-expression Network Analysis Uncovers Genes Associated with Photosynthetic Efficiency in Camellia oleifera.
    He Z; Liu C; Wang X; Wang R; Tian Y; Chen Y
    Biochem Genet; 2021 Apr; 59(2):398-421. PubMed ID: 33040171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree (
    Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes.
    Dong B; Wu B; Hong W; Li X; Li Z; Xue L; Huang Y
    PLoS One; 2017; 12(7):e0181835. PubMed ID: 28759610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars.
    Chen Y; Wang B; Chen J; Wang X; Wang R; Peng S; Chen L; Ma L; Luo J
    Front Plant Sci; 2015; 6():189. PubMed ID: 25873921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic and metabolomic insights on the molecular mechanisms of flower buds in responses to cold stress in two
    Wang YJ; Wu LL; Sun MH; Li Z; Tan XF; Li JA
    Front Plant Sci; 2023; 14():1126660. PubMed ID: 36968351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-omics joint analysis reveals how
    He Z; Cui K; Wang R; Xu T; Zhang Z; Wang X; Chen Y; Zhu Y
    Front Microbiol; 2023; 14():1152632. PubMed ID: 37007482
    [No Abstract]   [Full Text] [Related]  

  • 8. Analysis of Camellia oleifera transcriptome reveals key pathways and hub genes involved during different photoperiods.
    Yan J; He J; Li J; Ren S; Wang Y; Zhou J; Tan X
    BMC Plant Biol; 2022 Sep; 22(1):435. PubMed ID: 36089577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of mRNA and microRNA analysis reveals the molecular mechanisms underlying drought stress tolerance in maize (
    Jiao P; Ma R; Wang C; Chen N; Liu S; Qu J; Guan S; Ma Y
    Front Plant Sci; 2022; 13():932667. PubMed ID: 36247625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress.
    Guo Y; Zhao S; Zhu C; Chang X; Yue C; Wang Z; Lin Y; Lai Z
    BMC Plant Biol; 2017 Nov; 17(1):211. PubMed ID: 29157225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco.
    Chen Q; Li M; Zhang Z; Tie W; Chen X; Jin L; Zhai N; Zheng Q; Zhang J; Wang R; Xu G; Zhang H; Liu P; Zhou H
    BMC Genomics; 2017 Jan; 18(1):62. PubMed ID: 28068898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H
    PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and Transcriptional Analysis Reveals the Response Mechanism of
    Shen S; Yan W; Xie S; Yu J; Yao G; Xia P; Wu Y; Yang H
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-regulatory effects of hormone and mRNA-miRNA module on flower bud formation of
    Du W; Ding J; Li J; Li H; Ruan C
    Front Plant Sci; 2023; 14():1109603. PubMed ID: 37008468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic Analyses of
    Wu L; Li J; Li Z; Zhang F; Tan X
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32013013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of small RNA, degradome, and transcriptome sequencing data illustrates the mechanism of low phosphorus adaptation in
    Chen J; Han X; Ye S; Liu L; Yang B; Cao Y; Zhuo R; Yao X
    Front Plant Sci; 2022; 13():932926. PubMed ID: 35979079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physiology of drought stress in two grapevine cultivars: Photosynthesis, antioxidant system, and osmotic regulation responses.
    Lin Y; Liu S; Fang X; Ren Y; You Z; Xia J; Hakeem A; Yang Y; Wang L; Fang J; Shangguan L
    Physiol Plant; 2023; 175(5):e14005. PubMed ID: 37882275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera.
    Zhang F; Li Z; Zhou J; Gu Y; Tan X
    BMC Plant Biol; 2021 Jul; 21(1):348. PubMed ID: 34301189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes.
    Candar-Cakir B; Arican E; Zhang B
    Plant Biotechnol J; 2016 Aug; 14(8):1727-46. PubMed ID: 26857916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.