These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 36247536)

  • 1. Recent advancement in OMICS approaches to enhance abiotic stress tolerance in legumes.
    Ali A; Altaf MT; Nadeem MA; Karaköy T; Shah AN; Azeem H; Baloch FS; Baran N; Hussain T; Duangpan S; Aasim M; Boo KH; Abdelsalam NR; Hasan ME; Chung YS
    Front Plant Sci; 2022; 13():952759. PubMed ID: 36247536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement.
    Ramalingam A; Kudapa H; Pazhamala LT; Weckwerth W; Varshney RK
    Front Plant Sci; 2015; 6():1116. PubMed ID: 26734026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes.
    Jha UC; Sharma KD; Nayyar H; Parida SK; Siddique KHM
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216334
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Singh D; Chaudhary P; Taunk J; Singh CK; Singh D; Tomar RSS; Aski M; Konjengbam NS; Raje RS; Singh S; Sengar RS; Yadav RK; Pal M
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omics: The way forward to enhance abiotic stress tolerance in
    Raza A; Razzaq A; Mehmood SS; Hussain MA; Wei S; He H; Zaman QU; Xuekun Z; Hasanuzzaman M
    GM Crops Food; 2021 Jan; 12(1):251-281. PubMed ID: 33464960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing the Potential of Forage Legumes, Alfalfa, Soybean, and Cowpea for Sustainable Agriculture and Global Food Security.
    Kulkarni KP; Tayade R; Asekova S; Song JT; Shannon JG; Lee JD
    Front Plant Sci; 2018; 9():1314. PubMed ID: 30283466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize (
    Farooqi MQU; Nawaz G; Wani SH; Choudhary JR; Rana M; Sah RP; Afzal M; Zahra Z; Ganie SA; Razzaq A; Reyes VP; Mahmoud EA; Elansary HO; El-Abedin TKZ; Siddique KHM
    Front Plant Sci; 2022; 13():965878. PubMed ID: 36212378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated omics approaches for flax improvement under abiotic and biotic stress: Current status and future prospects.
    Yadav B; Kaur V; Narayan OP; Yadav SK; Kumar A; Wankhede DP
    Front Plant Sci; 2022; 13():931275. PubMed ID: 35958216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Chickpea Germplasm Diversity for Broadening the Genetic Base Utilizing Genomic Resourses.
    Singh RK; Singh C; Ambika ; Chandana BS; Mahto RK; Patial R; Gupta A; Gahlaut V; Gayacharan ; Hamwieh A; Upadhyaya HD; Kumar R
    Front Genet; 2022; 13():905771. PubMed ID: 36035111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of tolerance to the root lesion nematode Pratylenchus neglectus in the legume Medicago littoralis.
    Oldach KH; Peck DM; Nair RM; Sokolova M; Harris J; Bogacki P; Ballard R
    BMC Plant Biol; 2014 Apr; 14():100. PubMed ID: 24742262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics for abiotic stresses in legumes: present status and future directions.
    Jan N; Rather AM; John R; Chaturvedi P; Ghatak A; Weckwerth W; Zargar SM; Mir RA; Khan MA; Mir RR
    Crit Rev Biotechnol; 2023 Mar; 43(2):171-190. PubMed ID: 35109728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing future heat-resilient vegetable crops.
    Saeed F; Chaudhry UK; Raza A; Charagh S; Bakhsh A; Bohra A; Ali S; Chitikineni A; Saeed Y; Visser RGF; Siddique KHM; Varshney RK
    Funct Integr Genomics; 2023 Jan; 23(1):47. PubMed ID: 36692535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing Climate-Resilient Chickpea Involving Physiological and Molecular Approaches With a Focus on Temperature and Drought Stresses.
    Rani A; Devi P; Jha UC; Sharma KD; Siddique KHM; Nayyar H
    Front Plant Sci; 2019; 10():1759. PubMed ID: 32161601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can omics deliver temperature resilient ready-to-grow crops?
    Raza A; Tabassum J; Kudapa H; Varshney RK
    Crit Rev Biotechnol; 2021 Dec; 41(8):1209-1232. PubMed ID: 33827346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in epigenetic features in legumes under abiotic stresses.
    Yung WS; Huang C; Li MW; Lam HM
    Plant Genome; 2023 Dec; 16(4):e20237. PubMed ID: 35730915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress of Genomics-Driven Approaches for Sustaining Underutilized Legume Crops in the Post-Genomic Era.
    Jha UC; Nayyar H; Parida SK; Bakır M; von Wettberg EJB; Siddique KHM
    Front Genet; 2022; 13():831656. PubMed ID: 35464848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart breeding approaches in post-genomics era for developing climate-resilient food crops.
    Naqvi RZ; Siddiqui HA; Mahmood MA; Najeebullah S; Ehsan A; Azhar M; Farooq M; Amin I; Asad S; Mukhtar Z; Mansoor S; Asif M
    Front Plant Sci; 2022; 13():972164. PubMed ID: 36186056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges.
    Mekonnen TW; Gerrano AS; Mbuma NW; Labuschagne MT
    Plants (Basel); 2022 Jun; 11(12):. PubMed ID: 35736733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.