These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36247544)

  • 61. Cellulose synthase-like D movement in the plasma membrane requires enzymatic activity.
    Wu SZ; Chaves AM; Li R; Roberts AW; Bezanilla M
    J Cell Biol; 2023 Jun; 222(6):. PubMed ID: 37071416
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cloning and characterization of cellulose synthase-like gene, PtrCSLD2 from developing xylem of aspen trees.
    Samuga A; Joshi CP
    Physiol Plant; 2004 Apr; 120(4):631-641. PubMed ID: 15032825
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae.
    Silvera K; Santiago LS; Cushman JC; Winter K
    Plant Physiol; 2009 Apr; 149(4):1838-47. PubMed ID: 19182098
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bark water storage capacity influences epiphytic orchid preference for host trees.
    Zarate-García AM; Noguera-Savelli E; Andrade-Canto SB; Zavaleta-Mancera HA; Gauthier A; Alatorre-Cobos F
    Am J Bot; 2020 May; 107(5):726-734. PubMed ID: 32346866
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chloroplast Genome Sequence Annotation of
    Biswal D; Konhar R; Debnath M; Parameswaran S; Sundar D; Tandon P
    PLoS Curr; 2017 May; 9():. PubMed ID: 28736679
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fungal diversity driven by bark features affects phorophyte preference in epiphytic orchids from southern China.
    Pecoraro L; Rasmussen HN; Gomes SIF; Wang X; Merckx VSFT; Cai L; Rasmussen FN
    Sci Rep; 2021 May; 11(1):11287. PubMed ID: 34050223
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Orchid epiphytes do not receive organic substances from living trees through fungi.
    Eskov AK; Voronina EY; Tedersoo L; Tiunov AV; Manh V; Prilepsky NG; Antipina VA; Elumeeva TG; Abakumov EV; Onipchenko VG
    Mycorrhiza; 2020 Nov; 30(6):697-704. PubMed ID: 32803447
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification of high-copy number long terminal repeat retrotransposons and their expansion in Phalaenopsis orchids.
    Hsu CC; Chen SY; Lai PH; Hsiao YY; Tsai WC; Liu ZJ; Chung MC; Panaud O; Chen HH
    BMC Genomics; 2020 Nov; 21(1):807. PubMed ID: 33213366
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The MADS and the Beauty: Genes Involved in the Development of Orchid Flowers.
    Aceto S; Gaudio L
    Curr Genomics; 2011 Aug; 12(5):342-56. PubMed ID: 22294877
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chromosome-scale assembly of the Dendrobium chrysotoxum genome enhances the understanding of orchid evolution.
    Zhang Y; Zhang GQ; Zhang D; Liu XD; Xu XY; Sun WH; Yu X; Zhu X; Wang ZW; Zhao X; Zhong WY; Chen H; Yin WL; Huang T; Niu SC; Liu ZJ
    Hortic Res; 2021 Sep; 8(1):183. PubMed ID: 34465765
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Are there keystone mycorrhizal fungi associated to tropical epiphytic orchids?
    Cevallos S; Sánchez-Rodríguez A; Decock C; Declerck S; Suárez JP
    Mycorrhiza; 2017 Apr; 27(3):225-232. PubMed ID: 27882467
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley.
    Held MA; Penning B; Brandt AS; Kessans SA; Yong W; Scofield SR; Carpita NC
    Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20534-9. PubMed ID: 19075248
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genome-wide identification of the Liriodendron chinense WRKY gene family and its diverse roles in response to multiple abiotic stress.
    Wu W; Zhu S; Xu L; Zhu L; Wang D; Liu Y; Liu S; Hao Z; Lu Y; Yang L; Shi J; Chen J
    BMC Plant Biol; 2022 Jan; 22(1):25. PubMed ID: 35012508
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Significant phorophyte (substrate) bias is not explained by fitness benefits in three epiphytic orchid species.
    Gowland KM; Wood J; Clements MA; Nicotra AB
    Am J Bot; 2011 Feb; 98(2):197-206. PubMed ID: 21613109
    [TBL] [Abstract][Full Text] [Related]  

  • 75. CAM plasticity in epiphytic tropical orchid species responding to environmental stress.
    Tay S; He J; Yam TW
    Bot Stud; 2019 May; 60(1):7. PubMed ID: 31087187
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses.
    Mondragón-Palomino M; Hiese L; Härter A; Koch MA; Theissen G
    BMC Evol Biol; 2009 Apr; 9():81. PubMed ID: 19383167
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases.
    Liepman AH; Wilkerson CG; Keegstra K
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):2221-6. PubMed ID: 15647349
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Root photosynthesis prevents hypoxia in the epiphytic orchid
    Brunello L; Polverini E; Lauria G; Landi M; Guidi L; Loreti E; Perata P
    Funct Plant Biol; 2024 Mar; 51():. PubMed ID: 38442921
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of a Dark Septate Fungal Endophyte on the Growth and Physiological Response of Seedlings to Drought in an Epiphytic Orchid.
    Liu N; Jacquemyn H; Liu Q; Shao SC; Ding G; Xing X
    Front Microbiol; 2022; 13():961172. PubMed ID: 35875551
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Genome-Wide Identification and Expression Pattern Analysis of KNOX Gene Family in Orchidaceae.
    Zhang D; Lan S; Yin WL; Liu ZJ
    Front Plant Sci; 2022; 13():901089. PubMed ID: 35712569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.