These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 36247584)
21. Assessing the efficiency of UAV for pesticide application in disease management of peanut crop. Shan C; Wang G; Wang H; Wu L; Song C; Hussain M; Wang H; Lan Y Pest Manag Sci; 2024 Sep; 80(9):4505-4515. PubMed ID: 38703046 [TBL] [Abstract][Full Text] [Related]
22. Tank-mix adjuvants improved spray performance and biological efficacy in rice insecticide application with unmanned aerial vehicle sprayer. Wang L; Xia S; Zhang H; Li Y; Huang Z; Qiao B; Zhong L; Cao M; He X; Wang C; Liu Y Pest Manag Sci; 2024 Sep; 80(9):4371-4385. PubMed ID: 38662472 [TBL] [Abstract][Full Text] [Related]
23. Stereoscopic plant-protection system integrating UAVs and autonomous ground sprayers for orchards. Jiang S; Chen B; Li W; Yang S; Zheng Y; Liu X Front Plant Sci; 2022; 13():1040808. PubMed ID: 36388533 [TBL] [Abstract][Full Text] [Related]
24. Comparison of UAV and fixed-wing aerial application for alfalfa insect pest control: evaluating efficacy, residues, and spray quality. Li X; Giles DK; Andaloro JT; Long R; Lang EB; Watson LJ; Qandah I Pest Manag Sci; 2021 Nov; 77(11):4980-4992. PubMed ID: 34216079 [TBL] [Abstract][Full Text] [Related]
25. Challenges and opportunities of unmanned aerial vehicles as a new tool for crop pest control. Zhang R; Hewitt AJ; Chen L; Li L; Tang Q Pest Manag Sci; 2023 Nov; 79(11):4123-4131. PubMed ID: 37494136 [TBL] [Abstract][Full Text] [Related]
26. Environmental, bystander and resident exposure from orchard applications using an agricultural unmanned aerial spraying system. Dubuis PH; Droz M; Melgar A; Zürcher UA; Zarn JA; Gindro K; König SLB Sci Total Environ; 2023 Jul; 881():163371. PubMed ID: 37044339 [TBL] [Abstract][Full Text] [Related]
27. Spray performance of flexible shield canopy opener and rotor wind integrated boom-sprayer application in soybean: effects on droplet deposition distribution. Yu S; Cui L; Cui H; Liu X; Liu J; Xin Z; Yuan J; Wang D Pest Manag Sci; 2024 Jul; 80(7):3334-3348. PubMed ID: 38380840 [TBL] [Abstract][Full Text] [Related]
28. Distribution characteristics on droplet deposition of wind field vortex formed by multi-rotor UAV. Guo S; Li J; Yao W; Zhan Y; Li Y; Shi Y PLoS One; 2019; 14(7):e0220024. PubMed ID: 31329644 [TBL] [Abstract][Full Text] [Related]
29. WSN-Assisted UAV Trajectory Adjustment for Pesticide Drift Control. Hu J; Wang T; Yang J; Lan Y; Lv S; Zhang Y Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987849 [TBL] [Abstract][Full Text] [Related]
30. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting. Wang B; Zhang Y; Wang C; Teng G Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236524 [TBL] [Abstract][Full Text] [Related]
31. Control Efficacy of UAV-Based Ultra-Low-Volume Application of Pesticide in Chestnut Orchards. Arakawa T; Kamio S Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514212 [TBL] [Abstract][Full Text] [Related]
32. Reducing environmental exposure to PPPs in super-high density olive orchards using UAV sprayers. Sánchez-Fernández L; Barrera-Báez M; Martínez-Guanter J; Pérez-Ruiz M Front Plant Sci; 2023; 14():1272372. PubMed ID: 38239222 [TBL] [Abstract][Full Text] [Related]
33. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Richardson B; Rolando CA; Somchit C; Dunker C; Strand TM; Kimberley MO Pest Manag Sci; 2020 Apr; 76(4):1282-1290. PubMed ID: 31595645 [TBL] [Abstract][Full Text] [Related]
34. Effect of formulations and adjuvants on the properties of acetamiprid solution and droplet deposition characteristics sprayed by UAV. Zeeshan M; Li H; Yousaf G; Ren H; Liu Y; Arshad M; Dou Z; Han X Front Plant Sci; 2024; 15():1441193. PubMed ID: 39157513 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of the deposition and distribution of spray droplets in citrus orchards by plant protection drones. Yan Y; Lan Y; Wang G; Hussain M; Wang H; Yu X; Shan C; Wang B; Song C Front Plant Sci; 2023; 14():1303669. PubMed ID: 38093990 [TBL] [Abstract][Full Text] [Related]
36. Assessing the potential spray drift of a six-rotor unmanned aerial vehicle sprayer using a test bench and airborne drift collectors under low wind velocities: impact of atomization characteristics and application parameters. Wongsuk S; Zhu Z; Zheng A; Qi P; Li Y; Huang Z; Han H; Wang C; He X Pest Manag Sci; 2024 Dec; 80(12):6053-6067. PubMed ID: 39030971 [TBL] [Abstract][Full Text] [Related]
37. Analysis of the research progress on the deposition and drift of spray droplets by plant protection UAVs. Weicai Q; Panyang C Sci Rep; 2023 Sep; 13(1):14935. PubMed ID: 37696849 [TBL] [Abstract][Full Text] [Related]
38. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Wang G; Lan Y; Qi H; Chen P; Hewitt A; Han Y Pest Manag Sci; 2019 Jun; 75(6):1546-1555. PubMed ID: 30620130 [TBL] [Abstract][Full Text] [Related]
39. Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2020 Jan; 64(1):25-37. PubMed ID: 31786605 [TBL] [Abstract][Full Text] [Related]
40. Comparison of off-target pesticide drift in paddy fields from unmanned aerial vehicle spraying using cellulose deposition sampler. Eun HR; Kim SH; Lee YH; Kim SM; Lee YJ; Jung HY; Min YG; Noh HH; Shin Y Ecotoxicol Environ Saf; 2024 Oct; 285():117075. PubMed ID: 39305778 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]