BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36247632)

  • 1. Evaluation of the tolerance and forage quality of different ecotypes of seashore paspalum.
    Jiang K; Yang Z; Sun J; Liu H; Chen S; Zhao Y; Xiong W; Lu W; Wang ZY; Wu X
    Front Plant Sci; 2022; 13():944894. PubMed ID: 36247632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum).
    Wu P; Cogill S; Qiu Y; Li Z; Zhou M; Hu Q; Chang Z; Noorai RE; Xia X; Saski C; Raymer P; Luo H
    BMC Genomics; 2020 Feb; 21(1):131. PubMed ID: 32033524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of differentially expressed salt-responsive proteins in roots of two perennial grass species contrasting in salinity tolerance.
    Liu Y; Du H; He X; Huang B; Wang Z
    J Plant Physiol; 2012 Jan; 169(2):117-26. PubMed ID: 22070977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological responses and tolerance mechanisms of seashore paspalum and centipedegrass exposed to osmotic and iso-osmotic salt stresses.
    Katuwal KB; Xiao B; Jespersen D
    J Plant Physiol; 2020 May; 248():153154. PubMed ID: 32224382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of a NF-YC Gene Results in Enhanced Drought and Salt Tolerance in Transgenic Seashore Paspalum.
    Wu X; Shi H; Guo Z
    Front Plant Sci; 2018; 9():1355. PubMed ID: 30298080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid metabolism and antioxidant system contribute to salinity tolerance in halophytic grass seashore paspalum in a tissue-specific manner.
    Pan L; Hu X; Liao L; Xu T; Sun Q; Tang M; Chen Z; Wang Z
    BMC Plant Biol; 2023 Jun; 23(1):337. PubMed ID: 37353755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of PvWAK3 from seashore paspalum increases salt tolerance in transgenic Arabidopsis via maintenance of ion and ROS homeostasis.
    Li Y; Yang Q; Huang H; Guo Y; Sun Q; Guo Z; Shi H
    Plant Physiol Biochem; 2024 Feb; 207():108337. PubMed ID: 38199027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Up-regulation of lipid metabolism and glycine betaine synthesis are associated with choline-induced salt tolerance in halophytic seashore paspalum.
    Gao Y; Li M; Zhang X; Yang Q; Huang B
    Plant Cell Environ; 2020 Jan; 43(1):159-173. PubMed ID: 31600831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forage potential of several halophytic species grown on saline soil in arid environments.
    Pirasteh-Anosheh H; Ranjbar G; Akram NA; Ghafar MA; Panico A
    Environ Res; 2023 Feb; 219():114954. PubMed ID: 36529322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance.
    Chen Y; Chen C; Tan Z; Liu J; Zhuang L; Yang Z; Huang B
    Front Plant Sci; 2016; 7():102. PubMed ID: 26904068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Halophyte Seashore Paspalum Uses Adaxial Leaf Papillae for Sodium Sequestration.
    Spiekerman JJ; Devos KM
    Plant Physiol; 2020 Dec; 184(4):2107-2119. PubMed ID: 33082268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybridization, polyploidy and clonality influence geographic patterns of diversity and salt tolerance in the model halophyte seashore paspalum (Paspalum vaginatum).
    Goad DM; Baxter I; Kellogg EA; Olsen KM
    Mol Ecol; 2021 Jan; 30(1):148-161. PubMed ID: 33128807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and Validation of Reference Genes for Seashore Paspalum Response to Abiotic Stresses.
    Liu Y; Liu J; Xu L; Lai H; Chen Y; Yang Z; Huang B
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28635628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of Aeluropus lagopoides (mangrove grass) ecotypes, a potential turfgrass, under high saline conditions.
    Zamin M; Khattak AM; Salim AM; Marcum KB; Shakur M; Shah S; Jan I; Fahad S
    Environ Sci Pollut Res Int; 2019 May; 26(13):13410-13421. PubMed ID: 30905018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant growth, salt removal capacity, and forage nutritive value of the annual euhalophyte
    Wang N; Zhao Z; Zhang X; Liu S; Zhang K; Hu M
    Front Plant Sci; 2022; 13():1040520. PubMed ID: 36733586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraspecific variation in elemental accumulation and its association with salt tolerance in Paspalum vaginatum.
    Goad DM; Kellogg EA; Baxter I; Olsen KM
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34568927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forage potential of native ecotypes of Paspalum notatum and P. guenoarum.
    Steiner MG; Dall'agnol M; Nabinger C; Scheffer-Basso SM; Weiler RL; Simioni C; Schifino-Wittmann MT; Motta ÉAMD
    An Acad Bras Cienc; 2017; 89(3):1753-1760. PubMed ID: 28813101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic relationships and variation among ecotypes of seashore paspalum (Paspalum vaginatum) determined by random amplified polymorphic DNA markers.
    Liu ZW; Jarret RL; Duncan RR; Kresovich S
    Genome; 1994 Dec; 37(6):1011-7. PubMed ID: 18470139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Climate Change and Fencing on Forage Nutrition Quality of Alpine Grasslands in the Northern Tibet.
    Zhang G; Dai E; Dawaqiongda ; Luobu ; Fu G
    Plants (Basel); 2023 Sep; 12(18):. PubMed ID: 37765346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First Report of Plant-Parasitic Nematodes on Seashore Paspalum (Paspalum vaginatum) in Barbados.
    McGroary PC; Cisar JL; Giblin-Davis RM; Ruiz OF; Nangle EJ
    Plant Dis; 2014 Jul; 98(7):1018. PubMed ID: 30708902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.