These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 36247668)
1. Micro/mesoporous LTL derived materials for catalytic transfer hydrogenation and acid reactions of bio-based levulinic acid and furanics. Antunes MM; Silva AF; Fernandes A; Ribeiro F; Neves P; Pillinger M; Valente AA Front Chem; 2022; 10():1006981. PubMed ID: 36247668 [TBL] [Abstract][Full Text] [Related]
2. Catalytic Transfer Hydrogenation and Acid Reactions of Furfural and 5-(Hydroxymethyl)furfural over Hf-TUD-1 Type Catalysts. Antunes MM; Silva AF; Bernardino CD; Fernandes A; Ribeiro F; Valente AA Molecules; 2021 Nov; 26(23):. PubMed ID: 34885785 [TBL] [Abstract][Full Text] [Related]
3. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators. Yun WC; Yang MT; Lin KA J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993 [TBL] [Abstract][Full Text] [Related]
4. Zirconium Phosphate-Pillared Zeolite MCM-36 for Green Production of γ-Valerolactone from Levulinic Acid via Catalytic Transfer Hydrogenation. Hou P; Su H; Jin K; Li Q; Yan W Molecules; 2024 Aug; 29(16):. PubMed ID: 39202858 [TBL] [Abstract][Full Text] [Related]
5. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media. Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G Front Chem; 2020; 8():221. PubMed ID: 32373576 [TBL] [Abstract][Full Text] [Related]
6. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond. Omoruyi U; Page S; Hallett J; Miller PW ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831 [TBL] [Abstract][Full Text] [Related]
7. MoO Wang L; Yang Y; Yin P; Ren Z; Liu W; Tian Z; Zhang Y; Xu E; Yin J; Wei M ACS Appl Mater Interfaces; 2021 Jul; 13(27):31799-31807. PubMed ID: 34197068 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of γ-Valerolactone from Carbohydrates and its Applications. Zhang Z ChemSusChem; 2016 Jan; 9(2):156-71. PubMed ID: 26733161 [TBL] [Abstract][Full Text] [Related]
9. Noble Metal-Free Hierarchical ZrY Zeolite Efficient for Hydrogenation of Biomass-Derived Levulinic Acid. Hu D; Xu H; Wu Z; Zhang M; Zhao Z; Wang Y; Yan K Front Chem; 2021; 9():725175. PubMed ID: 34712649 [TBL] [Abstract][Full Text] [Related]
10. Enhancing reductive conversion of levulinic acid and levulinates to γ-valerolactone: Role of oxygen vacancy in MnOx catalysts. Liu Y; Gao L; Chang G; Zhou W Bioresour Technol; 2024 Aug; 406():131001. PubMed ID: 38897549 [TBL] [Abstract][Full Text] [Related]
11. The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid. García-Sancho C; Mérida-Robles JM; Cecilia-Buenestado JA; Moreno-Tost R; Maireles-Torres PJ Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768767 [TBL] [Abstract][Full Text] [Related]
12. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts. Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151 [TBL] [Abstract][Full Text] [Related]
13. Surface-sealing encapsulation of phosphotungstic acid in microporous UiO-66 as a bifunctional catalyst for transfer hydrogenation of levulinic acid to γ-valerolactone. Tan H; Rong S; Zong Z; Zhang P; Zhao R; Song F; Cui H; Chen ZN; Yi W; Zhang F Phys Chem Chem Phys; 2023 Jul; 25(27):18215-18223. PubMed ID: 37394949 [TBL] [Abstract][Full Text] [Related]
14. Porous Ti/Zr Microspheres for Efficient Transfer Hydrogenation of Biobased Ethyl Levulinate to γ-Valerolactone. Yang T; Li H; He J; Liu Y; Zhao W; Wang Z; Ji X; Yang S ACS Omega; 2017 Mar; 2(3):1047-1054. PubMed ID: 31457487 [TBL] [Abstract][Full Text] [Related]
15. Collaborative Conversion of Biomass Carbohydrates into Valuable Chemicals: Catalytic Strategy and Mechanism Research. Feng J; Fan T; Ma C; Xu Y; Jiang J; Pan H J Agric Food Chem; 2020 Nov; 68(47):13760-13769. PubMed ID: 33196190 [TBL] [Abstract][Full Text] [Related]
16. Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu-Re/TiO Liu Y; Liu K; Zhang M; Zhang K; Ma J; Xiao S; Wei Z; Deng S RSC Adv; 2021 Dec; 12(1):602-610. PubMed ID: 35424528 [TBL] [Abstract][Full Text] [Related]
17. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites. Li J; Zhao S; Li Z; Liu D; Chi Y; Hu C Inorg Chem; 2021 Jun; 60(11):7785-7793. PubMed ID: 33755456 [TBL] [Abstract][Full Text] [Related]
18. Catalytic hydrogenation of levulinic acid to γ-valerolactone over lignin-metal coordinated carbon nanospheres in water. Xu Y; Liang Y; Guo H; Qi X Int J Biol Macromol; 2023 Jun; 240():124451. PubMed ID: 37062379 [TBL] [Abstract][Full Text] [Related]
19. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source. Yu Z; Lu X; Xiong J; Li X; Bai H; Ji N ChemSusChem; 2020 Jun; 13(11):2916-2930. PubMed ID: 32153131 [TBL] [Abstract][Full Text] [Related]
20. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]