These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 3624767)
1. Mechanisms of toxicity of 2- and 5-hydroxy-1,4-naphthoquinone; absence of a role for redox cycling in the toxicity of 2-hydroxy-1,4-naphthoquinone to isolated hepatocytes. d'Arcy Doherty M; Rodgers A; Cohen GM J Appl Toxicol; 1987 Apr; 7(2):123-9. PubMed ID: 3624767 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of toxicity of naphthoquinones to isolated hepatocytes. Miller MG; Rodgers A; Cohen GM Biochem Pharmacol; 1986 Apr; 35(7):1177-84. PubMed ID: 2421729 [TBL] [Abstract][Full Text] [Related]
3. Cytotoxic properties of iron-hydroxynaphthoquinone complexes in rat hepatocytes. Kumbhar A; Padhye S; Ross D Biometals; 1996 Jul; 9(3):235-40. PubMed ID: 8696075 [TBL] [Abstract][Full Text] [Related]
4. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Gant TW; Rao DN; Mason RP; Cohen GM Chem Biol Interact; 1988; 65(2):157-73. PubMed ID: 2835188 [TBL] [Abstract][Full Text] [Related]
5. Cytotoxicity of menadione and related quinones in freshly isolated rat hepatocytes: effects on thiol homeostasis and energy charge. Toxopeus C; van Holsteijn I; Thuring JW; Blaauboer BJ; Noordhoek J Arch Toxicol; 1993; 67(10):674-9. PubMed ID: 8135657 [TBL] [Abstract][Full Text] [Related]
6. Role of thiol homeostasis and adenine nucleotide metabolism in the protective effects of fructose in quinone-induced cytotoxicity in rat hepatocytes. Toxopeus C; van Holsteijn I; de Winther MP; van den Dobbelsteen D; Horbach GJ; Blaauboer BJ; Noordhoek J Biochem Pharmacol; 1994 Nov; 48(9):1682-92. PubMed ID: 7980636 [TBL] [Abstract][Full Text] [Related]
7. Discriminating redox cycling and arylation pathways of reactive chemical toxicity in trout hepatocytes. Schmieder PK; Tapper MA; Kolanczyk RC; Hammermeister DE; Sheedy BR; Denny JS Toxicol Sci; 2003 Mar; 72(1):66-76. PubMed ID: 12604835 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of toxic injury to isolated hepatocytes by 1-naphthol. Doherty MD; Cohen GM; Smith MT Biochem Pharmacol; 1984 Feb; 33(4):543-9. PubMed ID: 6200119 [TBL] [Abstract][Full Text] [Related]
9. Impact of cytotoxic plant naphthoquinones, juglone, plumbagin, lawsone and 2-methoxy-1,4-naphthoquinone, on Chlamydomonas reinhardtii reveals the biochemical mechanism of juglone toxicity by rapid depletion of plastoquinol. Nowicka B; Walczak J; Kapsiak M; Barnaś K; Dziuba J; Suchoń A Plant Physiol Biochem; 2023 Apr; 197():107660. PubMed ID: 36996637 [TBL] [Abstract][Full Text] [Related]
10. Interconversion of NAD(H) to NADP(H). A cellular response to quinone-induced oxidative stress in isolated hepatocytes. Stubberfield CR; Cohen GM Biochem Pharmacol; 1989 Aug; 38(16):2631-7. PubMed ID: 2764986 [TBL] [Abstract][Full Text] [Related]
11. Effects of Naphthazarin (DHNQ) Combined with Lawsone (NQ-2-OH) or 1,4-Naphthoquinone (NQ) on the Auxin-Induced Growth of Rudnicka M; Ludynia M; Karcz W Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30978914 [TBL] [Abstract][Full Text] [Related]
12. Effect of hydroxy substituent position on 1,4-naphthoquinone toxicity to rat hepatocytes. Ollinger K; Brunmark A J Biol Chem; 1991 Nov; 266(32):21496-503. PubMed ID: 1718980 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory effects of 1,4-naphthoquinone derivatives on rat cytochrome P4501A1-dependent monooxygenase activity in recombinant yeast microsomes. Inouye K; Saito A; Orita M; Tonomura B; Imaishi H; Ohkawa H J Biochem; 2000 Jun; 127(6):1041-6. PubMed ID: 10833272 [TBL] [Abstract][Full Text] [Related]
14. The role of oxidative processes in the cytotoxicity of substituted 1,4-naphthoquinones in isolated hepatocytes. Ross D; Thor H; Threadgill MD; Sandy MS; Smith MT; Moldéus P; Orrenius S Arch Biochem Biophys; 1986 Aug; 248(2):460-6. PubMed ID: 3017211 [TBL] [Abstract][Full Text] [Related]
15. Hydroxyl radical generation mechanism during the redox cycling process of 1,4-naphthoquinone. Shang Y; Chen C; Li Y; Zhao J; Zhu T Environ Sci Technol; 2012 Mar; 46(5):2935-42. PubMed ID: 22288565 [TBL] [Abstract][Full Text] [Related]
17. The formation of active oxygen species following activation of 1-naphthol, 1,2- and 1,4-naphthoquinone by rat liver microsomes. Thornalley PJ; Doherty MD; Smith MT; Bannister JV; Cohen GM Chem Biol Interact; 1984 Feb; 48(2):195-206. PubMed ID: 6321045 [TBL] [Abstract][Full Text] [Related]
18. Menadione-induced oxidative stress in hepatocytes isolated from fed and fasted rats: the role of NADPH-regenerating pathways. Smith PF; Alberts DW; Rush GF Toxicol Appl Pharmacol; 1987 Jun; 89(2):190-201. PubMed ID: 3603556 [TBL] [Abstract][Full Text] [Related]
19. Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: relation to glutathione and NAD(P)H:quinone reductase (DT-diaphorase) activity. Wefers H; Sies H Arch Biochem Biophys; 1983 Jul; 224(2):568-78. PubMed ID: 6191666 [TBL] [Abstract][Full Text] [Related]
20. Redox and Nucleophilic Reactions of Naphthoquinones with Small Thiols and Their Effects on Oxidization of H Olson KR; Clear KJ; Gao Y; Ma Z; Cieplik NM; Fiume AR; Gaziano DJ; Kasko SM; Luu J; Pfaff E; Travlos A; Velander C; Wilson KJ; Edwards ED; Straub KD; Wu G Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]