These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 36247728)
81. Transcranial magnetic stimulation with a half-sine wave pulse elicits direction-specific effects in human motor cortex. Jung NH; Delvendahl I; Pechmann A; Gleich B; Gattinger N; Siebner HR; Mall V BMC Neurosci; 2012 Nov; 13():139. PubMed ID: 23126287 [TBL] [Abstract][Full Text] [Related]
82. Corticomotor excitability and plasticity following complex visuomotor training in young and old adults. Cirillo J; Todd G; Semmler JG Eur J Neurosci; 2011 Dec; 34(11):1847-56. PubMed ID: 22004476 [TBL] [Abstract][Full Text] [Related]
83. Reliability of transcallosal inhibition measurements for the lower limb motor cortex in stroke. Sivaramakrishnan A; Madhavan S Neurosci Lett; 2021 Jan; 743():135558. PubMed ID: 33352282 [TBL] [Abstract][Full Text] [Related]
84. Inverse correlation between resting motor threshold and corticomotor excitability after static magnetic stimulation of human motor cortex. Silbert BI; Pevcic DD; Patterson HI; Windnagel KA; Thickbroom GW Brain Stimul; 2013 Sep; 6(5):817-20. PubMed ID: 23598254 [TBL] [Abstract][Full Text] [Related]
85. Reliability of motor-evoked potentials in the ADM muscle of older adults. Christie A; Fling B; Crews RT; Mulwitz LA; Kamen G J Neurosci Methods; 2007 Aug; 164(2):320-4. PubMed ID: 17588673 [TBL] [Abstract][Full Text] [Related]
86. Effects of a Single Session of High Intensity Interval Treadmill Training on Corticomotor Excitability following Stroke: Implications for Therapy. Madhavan S; Stinear JW; Kanekar N Neural Plast; 2016; 2016():1686414. PubMed ID: 27738524 [No Abstract] [Full Text] [Related]
87. Repetition suppression in transcranial magnetic stimulation-induced motor-evoked potentials is modulated by cortical inhibition. Kallioniemi E; Pääkkönen A; Julkunen P Neuroscience; 2015 Dec; 310():504-11. PubMed ID: 26427962 [TBL] [Abstract][Full Text] [Related]
88. Interventional repetitive I-wave transcranial magnetic stimulation (TMS): the dimension of stimulation duration. Murray LM; Nosaka K; Thickbroom GW Brain Stimul; 2011 Oct; 4(4):261-5. PubMed ID: 22032741 [TBL] [Abstract][Full Text] [Related]
89. Short-latency afferent-induced facilitation and inhibition as predictors of thermally induced variations in corticomotor excitability. Ansari Y; Tremblay F Exp Brain Res; 2019 Jun; 237(6):1445-1455. PubMed ID: 30895341 [TBL] [Abstract][Full Text] [Related]
90. Age-related differences in short- and long-interval intracortical inhibition in a human hand muscle. Opie GM; Semmler JG Brain Stimul; 2014; 7(5):665-72. PubMed ID: 25088463 [TBL] [Abstract][Full Text] [Related]
91. Superconditioning TMS for examining upper motor neuron function in MND. Calancie B; Young E; Watson ML; Wang D; Alexeeva N Exp Brain Res; 2019 Aug; 237(8):2087-2103. PubMed ID: 31175383 [TBL] [Abstract][Full Text] [Related]
92. On the reliability of motor evoked potentials in hand muscles of healthy adults: a systematic review. Osnabruegge M; Kanig C; Schwitzgebel F; Litschel K; Seiberl W; Mack W; Schecklmann M; Schoisswohl S Front Hum Neurosci; 2023; 17():1237712. PubMed ID: 37719769 [TBL] [Abstract][Full Text] [Related]
93. Stability and test-retest reliability of neuronavigated TMS measures of corticospinal and intracortical excitability. Therrien-Blanchet JM; Ferland MC; Rousseau MA; Badri M; Boucher E; Merabtine A; Hofmann LH; Théoret H Brain Res; 2022 Nov; 1794():148057. PubMed ID: 35987284 [TBL] [Abstract][Full Text] [Related]
94. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway. D'Amico JM; Dongés SC; Taylor JL J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098 [TBL] [Abstract][Full Text] [Related]
95. Increase in tibialis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve. Khaslavskaia S; Ladouceur M; Sinkjaer T Exp Brain Res; 2002 Aug; 145(3):309-15. PubMed ID: 12136380 [TBL] [Abstract][Full Text] [Related]
96. EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities. Schaworonkow N; Triesch J; Ziemann U; Zrenner C Brain Stimul; 2019; 12(1):110-118. PubMed ID: 30268710 [TBL] [Abstract][Full Text] [Related]
97. Reproducibility of transcranial magnetic stimulation metrics in the study of proximal upper limb muscles. Sankarasubramanian V; Roelle SM; Bonnett CE; Janini D; Varnerin NM; Cunningham DA; Sharma JS; Potter-Baker KA; Wang X; Yue GH; Plow EB J Electromyogr Kinesiol; 2015 Oct; 25(5):754-64. PubMed ID: 26111434 [TBL] [Abstract][Full Text] [Related]
98. Inter- and intra-subject variability of motor cortex plasticity following continuous theta-burst stimulation. Vallence AM; Goldsworthy MR; Hodyl NA; Semmler JG; Pitcher JB; Ridding MC Neuroscience; 2015 Sep; 304():266-78. PubMed ID: 26208843 [TBL] [Abstract][Full Text] [Related]
99. Comparison between surface electrodes and ultrasound monitoring to measure TMS evoked muscle contraction. Kaczmarczyk I; Rawji V; Rothwell JC; Hodson-Tole E; Sharma N Muscle Nerve; 2021 May; 63(5):724-729. PubMed ID: 33533504 [TBL] [Abstract][Full Text] [Related]
100. Modulation of corticospinal excitability by paired associative stimulation: reproducibility of effects and intraindividual reliability. Fratello F; Veniero D; Curcio G; Ferrara M; Marzano C; Moroni F; Pellicciari MC; Bertini M; Rossini PM; De Gennaro L Clin Neurophysiol; 2006 Dec; 117(12):2667-74. PubMed ID: 17011821 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]