These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36248185)

  • 1. Which Sudden Stratospheric Warming Events Are Most Predictable?
    Chwat D; Garfinkel CI; Chen W; Rao J
    J Geophys Res Atmos; 2022 Sep; 127(18):e2022JD037521. PubMed ID: 36248185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MJO-Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models.
    Garfinkel CI; Schwartz C
    Geophys Res Lett; 2017 Oct; 44(19):10054-10062. PubMed ID: 29200535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the Downward and Surface Influence of the February 2018 and January 2019 Sudden Stratospheric Warming Events in Subseasonal to Seasonal (S2S) Models.
    Rao J; Garfinkel CI; White IP
    J Geophys Res Atmos; 2020 Jan; 125(2):e2019JD031919. PubMed ID: 32999797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insignificant QBO-MJO Prediction Skill Relationship in the SubX and S2S Subseasonal Reforecasts.
    Kim H; Richter JH; Martin Z
    J Geophys Res Atmos; 2019 Dec; 124(23):12655-12666. PubMed ID: 32025452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between decadal-to-multidecadal oceanic variability and sudden stratospheric warmings.
    Ayarzagüena B; Manzini E; Calvo N; Matei D
    Ann N Y Acad Sci; 2021 Nov; 1504(1):215-229. PubMed ID: 34247389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited surface impacts of the January 2021 sudden stratospheric warming.
    Davis NA; Richter JH; Glanville AA; Edwards J; LaJoie E
    Nat Commun; 2022 Mar; 13(1):1136. PubMed ID: 35241671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal prediction of the boreal winter stratosphere.
    Portal A; Ruggieri P; Palmeiro FM; García-Serrano J; Domeisen DIV; Gualdi S
    Clim Dyn; 2022; 58(7-8):2109-2130. PubMed ID: 35509809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the emerging relationship between the stratospheric Quasi-Biennial oscillation and the Madden-Julian oscillation.
    Klotzbach P; Abhik S; Hendon HH; Bell M; Lucas C; G Marshall A; Oliver ECJ
    Sci Rep; 2019 Feb; 9(1):2981. PubMed ID: 30814656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stratospheric impacts on dust transport and air pollution in West Africa and the Eastern Mediterranean.
    Dai Y; Hitchcock P; Mahowald NM; Domeisen DIV; Hamilton DS; Li L; Marticorena B; Kanakidou M; Mihalopoulos N; Aboagye-Okyere A
    Nat Commun; 2022 Dec; 13(1):7744. PubMed ID: 36517478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forecasting extreme stratospheric polar vortex events.
    Gray LJ; Brown MJ; Knight J; Andrews M; Lu H; O'Reilly C; Anstey J
    Nat Commun; 2020 Sep; 11(1):4630. PubMed ID: 32934223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Downward Influence of Sudden Stratospheric Warmings: Association with Tropospheric Precursors.
    White I; Garfinkel CI; Gerber EP; Jucker M; Aquila V; Oman LD
    J Clim; 2019 Jan; 32(1):85-108. PubMed ID: 32831474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Madden-Julian Oscillation influence on sub-seasonal rainfall variability on the west of South America.
    Recalde-Coronel GC; Zaitchik B; Pan WK
    Clim Dyn; 2020 Feb; 54(3-4):2167-2185. PubMed ID: 33456207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tropical stratopause precursor for sudden stratospheric warmings.
    Koushik N; Kumar KK; Pramitha M
    Sci Rep; 2022 Feb; 12(1):2937. PubMed ID: 35190610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observational Subseasonal Variability of the PM
    Lu Q; Rao J; Shi C; Guo D; Wang J; Liang Z; Wang T
    Adv Atmos Sci; 2022; 39(10):1623-1636. PubMed ID: 35601397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of the Madden-Julian Oscillation.
    Wang B; Chen G; Liu F
    Sci Adv; 2019 Jul; 5(7):eaax0220. PubMed ID: 31392274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The extraordinary events of the major, sudden stratospheric warming, the diminutive antarctic ozone hole, and its split in 2002.
    Varotsos C
    Environ Sci Pollut Res Int; 2004; 11(6):405-11. PubMed ID: 15603531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PM
    Yu Z; Ma J; Qu Y; Pan L; Wan S
    Sci Total Environ; 2023 Jul; 880():163358. PubMed ID: 37030354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No Robust Evidence of Future Changes in Major Stratospheric Sudden Warmings: A Multi-model Assessment from CCMI.
    Ayarzagüena B; Polvani LM; Langematz U; Akiyoshi H; Bekki S; Butchart N; Dameris M; Deushi M; Hardiman SC; Jöckel P; Klekociuk A; Marchand M; Michou M; Morgenstern O; O'Connor FM; Oman LD; Plummer DA; Revell L; Rozanov E; Saint-Martin D; Scinocca J; Stenke A; Stone K; Yamashita Y; Yoshida K; Zeng G
    Atmos Chem Phys; 2018 Aug; 18(15):11277-11287. PubMed ID: 32742282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equatorial ionization anomaly response to lunar phase and stratospheric sudden warming.
    Wu TY; Liu JY; Chang LC; Lin CH; Chiu YC
    Sci Rep; 2021 Jul; 11(1):14695. PubMed ID: 34282218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What is the lesson from the unprecedented event over Antarctica in 2002?
    Varotsos C
    Environ Sci Pollut Res Int; 2003; 10(2):80-1. PubMed ID: 12729038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.