BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 36248808)

  • 61. Tipping the scales: Immunotherapeutic strategies that disrupt immunosuppression and promote immune activation.
    Santiago-Sánchez GS; Hodge JW; Fabian KP
    Front Immunol; 2022; 13():993624. PubMed ID: 36159809
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Engineered Hybrid Treg-Targeted Nanosomes Restrain Lung Immunosuppression by Inducing Intratumoral CD8
    Domvri K; Petanidis S; Zarogoulidis P; Anestakis D; Charalampidis C; Tsavlis D; Huang H; Freitag L; Hohenforst-Schmidt W; Matthaios D; Katopodi T; Porpodis K
    Int J Nanomedicine; 2022; 17():4449-4468. PubMed ID: 36172007
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy.
    Ou W; Thapa RK; Jiang L; Soe ZC; Gautam M; Chang JH; Jeong JH; Ku SK; Choi HG; Yong CS; Kim JO
    J Control Release; 2018 Jul; 281():84-96. PubMed ID: 29777794
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Improving function of cytotoxic T-lymphocytes by transforming growth factor-β inhibitor in oral squamous cell carcinoma.
    Kondo Y; Suzuki S; Takahara T; Ono S; Goto M; Miyabe S; Sugita Y; Ogawa T; Ito H; Satou A; Tsuzuki T; Yoshikawa K; Ueda R; Nagao T
    Cancer Sci; 2021 Oct; 112(10):4037-4049. PubMed ID: 34309966
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence.
    Ye J; Ma C; Hsueh EC; Eickhoff CS; Zhang Y; Varvares MA; Hoft DF; Peng G
    J Immunol; 2013 Mar; 190(5):2403-14. PubMed ID: 23355732
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Providence of the CD25
    Chakraborty S; Bhattacharjee P; Panda AK; Kajal K; Bose S; Sa G
    Immunol Cell Biol; 2018 Nov; 96(10):1035-1048. PubMed ID: 29768737
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Metabolic reprogramming of T regulatory cells in the hypoxic tumor microenvironment.
    Sasidharan Nair V; Saleh R; Toor SM; Cyprian FS; Elkord E
    Cancer Immunol Immunother; 2021 Aug; 70(8):2103-2121. PubMed ID: 33532902
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Selective targeting or reprogramming of intra-tumoral Tregs.
    Mortezaee K
    Med Oncol; 2024 Feb; 41(3):71. PubMed ID: 38341821
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Drug conjugates for targeting regulatory T cells in the tumor microenvironment: guided missiles for cancer treatment.
    Yang J; Bae H
    Exp Mol Med; 2023 Sep; 55(9):1996-2004. PubMed ID: 37653036
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cytotoxic T lymphocyte-associated protein 4 antibody aggrandizes antitumor immune response of oncolytic virus M1 via targeting regulatory T cells.
    Liu W; Liu Y; Hu C; Xu C; Chen J; Chen Y; Cai J; Yan G; Zhu W
    Int J Cancer; 2021 Sep; 149(6):1369-1384. PubMed ID: 34086978
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Treg-mediated acquired resistance to immune checkpoint inhibitors.
    Saleh R; Elkord E
    Cancer Lett; 2019 Aug; 457():168-179. PubMed ID: 31078738
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Antagonistic Antibody Targeting TNFR2 Inhibits Regulatory T Cell Function to Promote Anti-Tumor Activity.
    Chen Y; Jia M; Wang S; Xu S; He N
    Front Immunol; 2022; 13():835690. PubMed ID: 35251028
    [TBL] [Abstract][Full Text] [Related]  

  • 73. BATF epigenetically and transcriptionally controls the activation program of regulatory T cells in human tumors.
    Itahashi K; Irie T; Yuda J; Kumagai S; Tanegashima T; Lin YT; Watanabe S; Goto Y; Suzuki J; Aokage K; Tsuboi M; Minami Y; Ishii G; Ohe Y; Ise W; Kurosaki T; Suzuki Y; Koyama S; Nishikawa H
    Sci Immunol; 2022 Oct; 7(76):eabk0957. PubMed ID: 36206353
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Targeting EZH2 Reprograms Intratumoral Regulatory T Cells to Enhance Cancer Immunity.
    Wang D; Quiros J; Mahuron K; Pai CC; Ranzani V; Young A; Silveria S; Harwin T; Abnousian A; Pagani M; Rosenblum MD; Van Gool F; Fong L; Bluestone JA; DuPage M
    Cell Rep; 2018 Jun; 23(11):3262-3274. PubMed ID: 29898397
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Treg-Dominant Tumor Microenvironment Is Responsible for Hyperprogressive Disease after PD-1 Blockade Therapy.
    Wakiyama H; Kato T; Furusawa A; Okada R; Inagaki F; Furumoto H; Fukushima H; Okuyama S; Choyke PL; Kobayashi H
    Cancer Immunol Res; 2022 Nov; 10(11):1386-1397. PubMed ID: 36169564
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Small molecule inhibitors targeting regulatory T cells for cancer treatment.
    García-Díaz N; Wei Q; Taskén K
    Eur J Immunol; 2024 Feb; 54(2):e2350448. PubMed ID: 37937687
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tumor resident regulatory T cells.
    Glasner A; Plitas G
    Semin Immunol; 2021 Feb; 52():101476. PubMed ID: 33906820
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High tumor hexokinase-2 expression promotes a pro-tumorigenic immune microenvironment by modulating CD8+/regulatory T-cell infiltration.
    Kim S; Koh J; Song SG; Yim J; Kim M; Keam B; Kim YT; Kim J; Chung DH; Jeon YK
    BMC Cancer; 2022 Nov; 22(1):1120. PubMed ID: 36320008
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Neuropilin-1 Antagonist Exerts Antitumor Immunity by Inhibiting the Suppressive Function of Intratumoral Regulatory T Cells.
    Jung K; Kim JA; Kim YJ; Lee HW; Kim CH; Haam S; Kim YS
    Cancer Immunol Res; 2020 Jan; 8(1):46-56. PubMed ID: 31554638
    [TBL] [Abstract][Full Text] [Related]  

  • 80. MiR-125b-5p modulates the function of regulatory T cells in tumor microenvironment by targeting TNFR2.
    Jiang M; Yang Y; Niu L; Li P; Chen Y; Liao P; Wang Y; Zheng J; Chen F; He H; Li H; Chen X
    J Immunother Cancer; 2022 Nov; 10(11):. PubMed ID: 36319063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.