BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 36248850)

  • 1. Innate immune checkpoint inhibitor resistance is associated with melanoma sub-types exhibiting invasive and de-differentiated gene expression signatures.
    Hossain SM; Gimenez G; Stockwell PA; Tsai P; Print CG; Rys J; Cybulska-Stopa B; Ratajska M; Harazin-Lechowska A; Almomani S; Jackson C; Chatterjee A; Eccles MR
    Front Immunol; 2022; 13():955063. PubMed ID: 36248850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma.
    Lepletier A; Madore J; O'Donnell JS; Johnston RL; Li XY; McDonald E; Ahern E; Kuchel A; Eastgate M; Pearson SA; Mallardo D; Ascierto PA; Massi D; Merelli B; Mandala M; Wilmott JS; Menzies AM; Leduc C; Stagg J; Routy B; Long GV; Scolyer RA; Bald T; Waddell N; Dougall WC; Teng MWL; Smyth MJ
    Clin Cancer Res; 2020 Jul; 26(14):3671-3681. PubMed ID: 32345648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biologic subtypes of melanoma predict survival benefit of combination anti-PD1+anti-CTLA4 immune checkpoint inhibitors versus anti-PD1 monotherapy.
    Rose AAN; Armstrong SM; Hogg D; Butler MO; Saibil SD; Arteaga DP; Pimentel Muniz T; Kelly D; Ghazarian D; King I; Kamil ZS; Ross K; Spreafico A
    J Immunother Cancer; 2021 Jan; 9(1):. PubMed ID: 33483342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic evaluation of the predictive gene expression signatures of immune checkpoint inhibitors in metastatic melanoma.
    Coleman S; Xie M; Tarhini AA; Tan AC
    Mol Carcinog; 2023 Jan; 62(1):77-89. PubMed ID: 35781709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circulating extracellular vesicles expressing PD1 and PD-L1 predict response and mediate resistance to checkpoint inhibitors immunotherapy in metastatic melanoma.
    Serratì S; Guida M; Di Fonte R; De Summa S; Strippoli S; Iacobazzi RM; Quarta A; De Risi I; Guida G; Paradiso A; Porcelli L; Azzariti A
    Mol Cancer; 2022 Jan; 21(1):20. PubMed ID: 35042524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immune checkpoint inhibition in patients with NRAS mutated and NRAS wild type melanoma: a multicenter Dermatologic Cooperative Oncology Group study on 637 patients from the prospective skin cancer registry ADOREG.
    Zaremba A; Mohr P; Gutzmer R; Meier F; Pföhler C; Weichenthal M; Terheyden P; Forschner A; Leiter U; Ulrich J; Utikal J; Welzel J; Kaatz M; Gebhardt C; Herbst R; Sindrilaru A; Dippel E; Sachse M; Meiss F; Heinzerling L; Haferkamp S; Weishaupt C; Löffler H; Kreft S; Griewank K; Livingstone E; Schadendorf D; Ugurel S; Zimmer L
    Eur J Cancer; 2023 Jul; 188():140-151. PubMed ID: 37245442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host response to immune checkpoint inhibitors contributes to tumor aggressiveness.
    Khononov I; Jacob E; Fremder E; Dahan N; Harel M; Raviv Z; Krastev B; Shaked Y
    J Immunother Cancer; 2021 Mar; 9(3):. PubMed ID: 33707313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing the relationship between the efficacy of first-line immune checkpoint inhibitors and cumulative sun damage in Japanese patients with advanced BRAF wild-type nonacral cutaneous melanoma: A retrospective real-world, multicenter study.
    Inozume T; Namikawa K; Kato H; Yoshikawa S; Kiniwa Y; Yoshino K; Mizuhashi S; Ito T; Takenouchi T; Matsushita S; Fujisawa Y; Matsuzawa T; Sugihara S; Asai J; Kitagawa H; Maekawa T; Isei T; Yasuda M; Yamazaki N; Uhara H; Nakamura Y
    J Dermatol Sci; 2023 Apr; 110(1):19-26. PubMed ID: 37045720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Molecular Determinants of Response or Resistance to Immune Checkpoint Inhibitor Therapies in Melanoma.
    Zhang W; Kong Y; Li Y; Shi F; Lyu J; Sheng C; Wang S; Wang Q
    Front Immunol; 2021; 12():798474. PubMed ID: 35087523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic control of
    Wang MM; Koskela SA; Mehmood A; Langguth M; Maranou E; Figueiredo CR
    Front Immunol; 2023; 14():1152228. PubMed ID: 37077920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circulating extracellular vesicles are monitoring biomarkers of anti-PD1 response and enhancer of tumor progression and immunosuppression in metastatic melanoma.
    Serratì S; Di Fonte R; Porcelli L; De Summa S; De Risi I; Fucci L; Ruggieri E; Marvulli TM; Strippoli S; Fasano R; Rafaschieri T; Guida G; Guida M; Azzariti A
    J Exp Clin Cancer Res; 2023 Sep; 42(1):251. PubMed ID: 37759291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunologic constant of rejection as a predictive biomarker of immune checkpoint inhibitors efficacy in non-small cell lung cancer.
    Mogenet A; Finetti P; Denicolai E; Greillier L; Boudou-Rouquette P; Goldwasser F; Lumet G; Ceccarelli M; Birnbaum D; Bedognetti D; Mamessier E; Barlesi F; Bertucci F; Tomasini P
    J Transl Med; 2023 Sep; 21(1):637. PubMed ID: 37726776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-depth plasma proteomics reveals increase in circulating PD-1 during anti-PD-1 immunotherapy in patients with metastatic cutaneous melanoma.
    Babačić H; Lehtiö J; Pico de Coaña Y; Pernemalm M; Eriksson H
    J Immunother Cancer; 2020 May; 8(1):. PubMed ID: 32457125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting early stages of cardiotoxicity from anti-PD1 immune checkpoint inhibitor therapy.
    Michel L; Helfrich I; Hendgen-Cotta UB; Mincu RI; Korste S; Mrotzek SM; Spomer A; Odersky A; Rischpler C; Herrmann K; Umutlu L; Coman C; Ahrends R; Sickmann A; Löffek S; Livingstone E; Ugurel S; Zimmer L; Gunzer M; Schadendorf D; Totzeck M; Rassaf T
    Eur Heart J; 2022 Jan; 43(4):316-329. PubMed ID: 34389849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer.
    Kim K; Park S; Park SY; Kim G; Park SM; Cho JW; Kim DH; Park YM; Koh YW; Kim HR; Ha SJ; Lee I
    Genome Med; 2020 Feb; 12(1):22. PubMed ID: 32111241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of tumor-intrinsic drivers of immune exclusion in acral melanoma.
    Augustin RC; Newman S; Li A; Joy M; Lyons M; Pham MP; Lucas P; Smith K; Sander C; Isett B; Davar D; Najjar YG; Zarour HM; Kirkwood JM; Luke JJ; Bao R
    J Immunother Cancer; 2023 Oct; 11(10):. PubMed ID: 37857525
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Zhou S; Zhang S; Zheng K; Li Z; Hu E; Mu Y; Mai J; Zhao A; Zhao Z; Li F
    J Immunother Cancer; 2024 Feb; 12(2):. PubMed ID: 38302417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsatellite Instability Predicts Response to Anti-PD1 Immunotherapy in Metastatic Melanoma.
    Roncati L
    Acta Dermatovenerol Croat; 2018 Dec; 26(4):341-343. PubMed ID: 30665488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circulating Immune Bioenergetic, Metabolic, and Genetic Signatures Predict Melanoma Patients' Response to Anti-PD-1 Immune Checkpoint Blockade.
    Triozzi PL; Stirling ER; Song Q; Westwood B; Kooshki M; Forbes ME; Holbrook BC; Cook KL; Alexander-Miller MA; Miller LD; Zhang W; Soto-Pantoja DR
    Clin Cancer Res; 2022 Mar; 28(6):1192-1202. PubMed ID: 35284940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-associated changes in the immune system may influence the response to anti-PD1 therapy in metastatic melanoma patients.
    Kasanen H; Hernberg M; Mäkelä S; Brück O; Juteau S; Kohtamäki L; Ilander M; Mustjoki S; Kreutzman A
    Cancer Immunol Immunother; 2020 May; 69(5):717-730. PubMed ID: 32036449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.