These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36249370)

  • 21. Zn-Ag-In-S quantum dot sensitized solar cells with enhanced efficiency by tuning defects.
    Zhang H; Fang W; Zhong Y; Zhao Q
    J Colloid Interface Sci; 2019 Jul; 547():267-274. PubMed ID: 30954770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zn-Cu-In-S-Se Quinary "Green" Alloyed Quantum-Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4 .
    Song H; Lin Y; Zhou M; Rao H; Pan Z; Zhong X
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):6137-6144. PubMed ID: 33258189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.
    Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J
    ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers.
    Shaikh JS; Shaikh NS; Mali SS; Patil JV; Beknalkar SA; Patil AP; Tarwal NL; Kanjanaboos P; Hong CK; Patil PS
    ChemSusChem; 2019 Nov; 12(21):4724-4753. PubMed ID: 31347771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.
    Wang J; Mora-Seró I; Pan Z; Zhao K; Zhang H; Feng Y; Yang G; Zhong X; Bisquert J
    J Am Chem Soc; 2013 Oct; 135(42):15913-22. PubMed ID: 24070636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells.
    Li W; Zhong X
    J Phys Chem Lett; 2015 Mar; 6(5):796-806. PubMed ID: 26262655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photovoltaic Materials and Their Path toward Cleaner Energy.
    Mitrašinović AM; Radosavljević M
    Glob Chall; 2023 Feb; 7(2):2200146. PubMed ID: 36778780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solar Paint from TiO
    Shen G; Du Z; Pan Z; Du J; Zhong X
    ACS Omega; 2018 Jan; 3(1):1102-1109. PubMed ID: 31457952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PbS Quantum Dots Sensitized TiO2 Solar Cells Prepared by Successive Ionic Layer Absorption and Reaction with Different Adsorption Layers.
    Yi J; Duan Y; Liu C; Gao S; Han X; An L
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3904-8. PubMed ID: 27451735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interface Engineering in Quantum-Dot-Sensitized Solar Cells.
    Halder G; Ghosh D; Ali MY; Sahasrabudhe A; Bhattacharyya S
    Langmuir; 2018 Sep; 34(35):10197-10216. PubMed ID: 29584956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.
    Baek SW; Shim JH; Seung HM; Lee GS; Hong JP; Lee KS; Park JG
    Nanoscale; 2014 Nov; 6(21):12524-31. PubMed ID: 25177831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite-Silicon Tandems.
    Dewi HA; Wang H; Li J; Thway M; Sridharan R; Stangl R; Lin F; Aberle AG; Mathews N; Bruno A; Mhaisalkar S
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34178-34187. PubMed ID: 31442024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency.
    Yuan Z; Yin L
    Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recombination in quantum dot sensitized solar cells.
    Mora-Seró I; Giménez S; Fabregat-Santiago F; Gómez R; Shen Q; Toyoda T; Bisquert J
    Acc Chem Res; 2009 Nov; 42(11):1848-57. PubMed ID: 19722527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression.
    Ip AH; Kiani A; Kramer IJ; Voznyy O; Movahed HF; Levina L; Adachi MM; Hoogland S; Sargent EH
    ACS Nano; 2015 Sep; 9(9):8833-42. PubMed ID: 26266671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes.
    Wang W; Jiang G; Yu J; Wang W; Pan Z; Nakazawa N; Shen Q; Zhong X
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22549-22559. PubMed ID: 28621932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications.
    Paulo S; Palomares E; Martinez-Ferrero E
    Nanomaterials (Basel); 2016 Aug; 6(9):. PubMed ID: 28335285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of power conversion efficiency by a stepwise band-gap structure for silicon quantum dot solar cells.
    Kwak GY; Kim TG; Kim N; Shin JY; Kim KJ
    Nanotechnology; 2020 May; 31(19):195404. PubMed ID: 31986507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Luminescent Spectral Conversion to Improve the Performance of Dye-Sensitized Solar Cells.
    Hosseini Z; Taghavinia N; Wei-Guang Diau E
    Chemphyschem; 2017 Dec; 18(23):3292-3308. PubMed ID: 28973791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.