These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 36249483)
1. Analysis based on neural representation of natural object surfaces to elucidate the mechanisms of a trained AlexNet model. Wagatsuma N; Hidaka A; Tamura H Front Comput Neurosci; 2022; 16():979258. PubMed ID: 36249483 [TBL] [Abstract][Full Text] [Related]
2. Correspondence between Monkey Visual Cortices and Layers of a Saliency Map Model Based on a Deep Convolutional Neural Network for Representations of Natural Images. Wagatsuma N; Hidaka A; Tamura H eNeuro; 2021; 8(1):. PubMed ID: 33234544 [TBL] [Abstract][Full Text] [Related]
3. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments. Jozwik KM; Kriegeskorte N; Storrs KR; Mur M Front Psychol; 2017; 8():1726. PubMed ID: 29062291 [TBL] [Abstract][Full Text] [Related]
4. Neural representations of the perception of handwritten digits and visual objects from a convolutional neural network compared to humans. Lee J; Jung M; Lustig N; Lee JH Hum Brain Mapp; 2023 Apr; 44(5):2018-2038. PubMed ID: 36637109 [TBL] [Abstract][Full Text] [Related]
5. Processing of chromatic information in a deep convolutional neural network. Flachot A; Gegenfurtner KR J Opt Soc Am A Opt Image Sci Vis; 2018 Apr; 35(4):B334-B346. PubMed ID: 29603962 [TBL] [Abstract][Full Text] [Related]
6. Representations of regular and irregular shapes by deep Convolutional Neural Networks, monkey inferotemporal neurons and human judgments. Kalfas I; Vinken K; Vogels R PLoS Comput Biol; 2018 Oct; 14(10):e1006557. PubMed ID: 30365485 [TBL] [Abstract][Full Text] [Related]
7. Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images. Jang H; McCormack D; Tong F PLoS Biol; 2021 Dec; 19(12):e3001418. PubMed ID: 34882676 [TBL] [Abstract][Full Text] [Related]
8. Non-accidental properties, metric invariance, and encoding by neurons in a model of ventral stream visual object recognition, VisNet. Rolls ET; Mills WPC Neurobiol Learn Mem; 2018 Jul; 152():20-31. PubMed ID: 29723671 [TBL] [Abstract][Full Text] [Related]
9. Diverse Deep Neural Networks All Predict Human Inferior Temporal Cortex Well, After Training and Fitting. Storrs KR; Kietzmann TC; Walther A; Mehrer J; Kriegeskorte N J Cogn Neurosci; 2021 Sep; 33(10):2044-2064. PubMed ID: 34272948 [TBL] [Abstract][Full Text] [Related]
10. Brain-optimized deep neural network models of human visual areas learn non-hierarchical representations. St-Yves G; Allen EJ; Wu Y; Kay K; Naselaris T Nat Commun; 2023 Jun; 14(1):3329. PubMed ID: 37286563 [TBL] [Abstract][Full Text] [Related]
11. Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks. Xu Y; Vaziri-Pashkam M J Neurosci; 2021 May; 41(19):4234-4252. PubMed ID: 33789916 [TBL] [Abstract][Full Text] [Related]
12. Which deep learning model can best explain object representations of within-category exemplars? Lee D J Vis; 2021 Sep; 21(10):12. PubMed ID: 34520508 [TBL] [Abstract][Full Text] [Related]
13. Linking patterns of infant eye movements to a neural network model of the ventral stream using representational similarity analysis. Kiat JE; Luck SJ; Beckner AG; Hayes TR; Pomaranski KI; Henderson JM; Oakes LM Dev Sci; 2022 Jan; 25(1):e13155. PubMed ID: 34240787 [TBL] [Abstract][Full Text] [Related]
14. 'Artiphysiology' reveals V4-like shape tuning in a deep network trained for image classification. Pospisil DA; Pasupathy A; Bair W Elife; 2018 Dec; 7():. PubMed ID: 30570484 [TBL] [Abstract][Full Text] [Related]
15. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons. Dong Q; Wang H; Hu Z Neural Comput; 2018 Feb; 30(2):447-476. PubMed ID: 29162010 [TBL] [Abstract][Full Text] [Related]
16. Representational Content of Oscillatory Brain Activity during Object Recognition: Contrasting Cortical and Deep Neural Network Hierarchies. Reddy L; Cichy RM; VanRullen R eNeuro; 2021; 8(3):. PubMed ID: 33903182 [TBL] [Abstract][Full Text] [Related]
17. STDP-based spiking deep convolutional neural networks for object recognition. Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958 [TBL] [Abstract][Full Text] [Related]
18. Deep Residual Network Predicts Cortical Representation and Organization of Visual Features for Rapid Categorization. Wen H; Shi J; Chen W; Liu Z Sci Rep; 2018 Feb; 8(1):3752. PubMed ID: 29491405 [TBL] [Abstract][Full Text] [Related]
19. Dissociable Neural Representations of Adversarially Perturbed Images in Convolutional Neural Networks and the Human Brain. Zhang C; Duan XH; Wang LY; Li YL; Yan B; Hu GE; Zhang RY; Tong L Front Neuroinform; 2021; 15():677925. PubMed ID: 34421567 [TBL] [Abstract][Full Text] [Related]
20. Neural Representations of Natural and Scrambled Movies Progressively Change from Rat Striate to Temporal Cortex. Vinken K; Van den Bergh G; Vermaercke B; Op de Beeck HP Cereb Cortex; 2016 Jul; 26(7):3310-22. PubMed ID: 27146315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]