These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36249575)

  • 1. Abdominal Movements in Insect Flight Reshape the Role of Non-Aerodynamic Structures for Flight Maneuverability I: Model Predictive Control for Flower Tracking.
    Bustamante J; Ahmed M; Deora T; Fabien B; Daniel TL
    Integr Org Biol; 2022; 4(1):obac039. PubMed ID: 36249575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hawkmoths regulate flight torques with their abdomen for yaw control.
    Le V; Cellini B; Schilder R; Mongeau JM
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 36995279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hawkmoth flight in the unsteady wakes of flowers.
    Matthews M; Sponberg S
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30291159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
    Jankauski M; Daniel TL; Shen IY
    Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2999-3006. PubMed ID: 12878668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of moth flight posture is mediated by wing mechanosensory feedback.
    Dickerson BH; Aldworth ZN; Daniel TL
    J Exp Biol; 2014 Jul; 217(Pt 13):2301-8. PubMed ID: 24737754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible strategies for flight control: an active role for the abdomen.
    Dyhr JP; Morgansen KA; Daniel TL; Cowan NJ
    J Exp Biol; 2013 May; 216(Pt 9):1523-36. PubMed ID: 23596279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.
    Hinson BT; Morgansen KA
    Bioinspir Biomim; 2015 Oct; 10(5):056013. PubMed ID: 26440705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering.
    Hedrick TL; Daniel TL
    J Exp Biol; 2006 Aug; 209(Pt 16):3114-30. PubMed ID: 16888060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth
    Fernández MJ; Driver ME; Hedrick TL
    J Exp Biol; 2017 Oct; 220(Pt 20):3649-3656. PubMed ID: 28794226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optomotor steering and flight control requires a specific sub-section of the compound eye in the hawkmoth,
    Copley S; Parthasarathy K; Willis MA
    J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 29967220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta.
    Nguyen AT; Han JS; Han JH
    Bioinspir Biomim; 2016 Dec; 12(1):016007. PubMed ID: 27966467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hawkmoth wingbeat is not at resonance.
    Gau J; Wold ES; Lynch J; Gravish N; Sponberg S
    Biol Lett; 2022 May; 18(5):20220063. PubMed ID: 35611583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative system identification of flower tracking performance in three hawkmoth species reveals adaptations for dim light vision.
    Stöckl AL; Kihlström K; Chandler S; Sponberg S
    Philos Trans R Soc Lond B Biol Sci; 2017 Apr; 372(1717):. PubMed ID: 28193822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless stimulation of antennal muscles in freely flying hawkmoths leads to flight path changes.
    Hinterwirth AJ; Medina B; Lockey J; Otten D; Voldman J; Lang JH; Hildebrand JG; Daniel TL
    PLoS One; 2012; 7(12):e52725. PubMed ID: 23300751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wing damage affects flight kinematics but not flower tracking performance in hummingbird hawkmoths.
    Kihlström K; Aiello B; Warrant E; Sponberg S; Stöckl A
    J Exp Biol; 2021 Feb; 224(Pt 4):. PubMed ID: 33504584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization.
    Kim JK; Han JS; Lee JS; Han JH
    Bioinspir Biomim; 2015 Sep; 10(5):056012. PubMed ID: 26414442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Span efficiency in hawkmoths.
    Henningsson P; Bomphrey RJ
    J R Soc Interface; 2013 Jul; 10(84):20130099. PubMed ID: 23658113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta).
    Cheng B; Deng X; Hedrick TL
    J Exp Biol; 2011 Dec; 214(Pt 24):4092-106. PubMed ID: 22116752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.