These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36250019)

  • 1. Effects of a plant cyclotide on conformational dynamics and destabilization of β-amyloid fibrils through molecular dynamics simulations.
    Kalmankar NV; Gehi BR; Sowdhamini R
    Front Mol Biosci; 2022; 9():986704. PubMed ID: 36250019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disulfide-Rich Cyclic Peptides from
    Kalmankar NV; Hari H; Sowdhamini R; Venkatesan R
    J Med Chem; 2021 Jun; 64(11):7422-7433. PubMed ID: 34048659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Norepinephrine Inhibits Alzheimer's Amyloid-β Peptide Aggregation and Destabilizes Amyloid-β Protofibrils: A Molecular Dynamics Simulation Study.
    Zou Y; Qian Z; Chen Y; Qian H; Wei G; Zhang Q
    ACS Chem Neurosci; 2019 Mar; 10(3):1585-1594. PubMed ID: 30605312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An α-helix mimetic oligopyridylamide, ADH-31, modulates Aβ
    Kaur A; Goyal D; Goyal B
    Phys Chem Chem Phys; 2020 Dec; 22(48):28055-28073. PubMed ID: 33289734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic insights into the mitigation of Aβ aggregation and protofibril destabilization by a D-enantiomeric decapeptide rk10.
    Singh K; Kaur A; Goyal D; Goyal B
    Phys Chem Chem Phys; 2022 Sep; 24(36):21975-21994. PubMed ID: 36069400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity.
    Jin Y; Sun Y; Lei J; Wei G
    Phys Chem Chem Phys; 2018 Jun; 20(25):17208-17217. PubMed ID: 29900443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a Novel Multifunctional Ligand for Simultaneous Inhibition of Amyloid-Beta (Aβ
    Asadbegi M; Shamloo A
    ACS Chem Neurosci; 2019 Nov; 10(11):4619-4632. PubMed ID: 31566950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico and in vitro studies to elucidate the role of Cu2+ and galanthamine as the limiting step in the amyloid beta (1-42) fibrillation process.
    Hernández-Rodríguez M; Correa-Basurto J; Benitez-Cardoza CG; Resendiz-Albor AA; Rosales-Hernández MC
    Protein Sci; 2013 Oct; 22(10):1320-35. PubMed ID: 23904252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation.
    Okumura H; Itoh SG
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation Mechanism of Alzheimer's Amyloid β-Peptide Mediated by α-Strand/α-Sheet Structure.
    Balupuri A; Choi KE; Kang NS
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32046006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ
    Saini RK; Shuaib S; Goyal D; Goyal B
    J Biomol Struct Dyn; 2019 Aug; 37(12):3183-3197. PubMed ID: 30582723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β
    Shuaib S; Goyal B
    J Biomol Struct Dyn; 2018 Feb; 36(3):663-678. PubMed ID: 28162045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic profiling of the medicinal plant Clitoria ternatea: identification of potential genes in cyclotide biosynthesis.
    Kalmankar NV; Venkatesan R; Balaram P; Sowdhamini R
    Sci Rep; 2020 Jul; 10(1):12658. PubMed ID: 32728092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Destabilization of the Alzheimer's amyloid-β peptide by a proline-rich β-sheet breaker peptide: a molecular dynamics simulation study.
    Kanchi PK; Dasmahapatra AK
    J Mol Model; 2021 Nov; 27(12):356. PubMed ID: 34796404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biflavonoid-Induced Disruption of Hydrogen Bonds Leads to Amyloid-β Disaggregation.
    Windsor PK; Plassmeyer SP; Mattock DS; Bradfield JC; Choi EY; Miller BR; Han BH
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Destabilization potential of beta sheet breaker peptides on Abeta fibril structure: an insight from molecular dynamics simulation study.
    Jani V; Sonavane U; Joshi R
    RSC Adv; 2021 Jul; 11(38):23557-23573. PubMed ID: 35479797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of K16A and K28A mutation on the structure and dynamics of amyloid-β
    Shuaib S; Saini RK; Goyal D; Goyal B
    J Biomol Struct Dyn; 2020 Feb; 38(3):708-721. PubMed ID: 30821624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of phenolic OH groups of flavonoid compounds with H-bond formation ability to suppress amyloid mature fibrils by destabilizing β-sheet conformation of monomeric Aβ17-42.
    Andarzi Gargari S; Barzegar A; Tarinejad A
    PLoS One; 2018; 13(6):e0199541. PubMed ID: 29953467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Destabilization of Aβ fibrils by omega-3 polyunsaturated fatty acids: a molecular dynamics study.
    Gupta S; Dasmahapatra AK
    J Biomol Struct Dyn; 2023 Feb; 41(2):581-598. PubMed ID: 34856889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.