BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36250139)

  • 21. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network.
    Fujioka T; Kubota K; Mori M; Kikuchi Y; Katsuta L; Kasahara M; Oda G; Ishiba T; Nakagawa T; Tateishi U
    Jpn J Radiol; 2019 Jun; 37(6):466-472. PubMed ID: 30888570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diagnosis of focal liver lesions with deep learning-based multi-channel analysis of hepatocyte-specific contrast-enhanced magnetic resonance imaging.
    Stollmayer R; Budai BK; Tóth A; Kalina I; Hartmann E; Szoldán P; Bérczi V; Maurovich-Horvat P; Kaposi PN
    World J Gastroenterol; 2021 Sep; 27(35):5978-5988. PubMed ID: 34629814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Learning With 3D Convolutional Neural Network for Noninvasive Prediction of Microvascular Invasion in Hepatocellular Carcinoma.
    Zhang Y; Lv X; Qiu J; Zhang B; Zhang L; Fang J; Li M; Chen L; Wang F; Liu S; Zhang S
    J Magn Reson Imaging; 2021 Jul; 54(1):134-143. PubMed ID: 33559293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison between deep learning convolutional neural networks and radiologists in the differentiation of benign and malignant thyroid nodules on CT images.
    Zhao HB; Liu C; Ye J; Chang LF; Xu Q; Shi BW; Liu LL; Yin YL; Shi BB
    Endokrynol Pol; 2021; 72(3):217-225. PubMed ID: 33619712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A deep learning-based automatic staging method for early endometrial cancer on MRI images.
    Mao W; Chen C; Gao H; Xiong L; Lin Y
    Front Physiol; 2022; 13():974245. PubMed ID: 36111158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An efficient deep convolutional neural network model for visual localization and automatic diagnosis of thyroid nodules on ultrasound images.
    Zhu J; Zhang S; Yu R; Liu Z; Gao H; Yue B; Liu X; Zheng X; Gao M; Wei X
    Quant Imaging Med Surg; 2021 Apr; 11(4):1368-1380. PubMed ID: 33816175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utility of histogram analysis of apparent diffusion coefficient maps obtained using 3.0T MRI for distinguishing uterine carcinosarcoma from endometrial carcinoma.
    Takahashi M; Kozawa E; Tanisaka M; Hasegawa K; Yasuda M; Sakai F
    J Magn Reson Imaging; 2016 Jun; 43(6):1301-7. PubMed ID: 26605502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using artificial intelligence to diagnose fresh osteoporotic vertebral fractures on magnetic resonance images.
    Yabu A; Hoshino M; Tabuchi H; Takahashi S; Masumoto H; Akada M; Morita S; Maeno T; Iwamae M; Inose H; Kato T; Yoshii T; Tsujio T; Terai H; Toyoda H; Suzuki A; Tamai K; Ohyama S; Hori Y; Okawa A; Nakamura H
    Spine J; 2021 Oct; 21(10):1652-1658. PubMed ID: 33722728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Uterine Carcinosarcoma and Uterine Endometrial Carcinoma Using Magnetic Resonance Imaging Findings and Texture Features.
    Tsuchihashi S; Nagawa K; Shimizu H; Inoue K; Okada Y; Baba Y; Hasegawa K; Yasuda M; Kozawa E
    Cureus; 2024 Mar; 16(3):e55916. PubMed ID: 38601366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of Microvascular Invasion of Hepatocellular Carcinoma Based on Preoperative Diffusion-Weighted MR Using Deep Learning.
    Wang G; Jian W; Cen X; Zhang L; Guo H; Liu Z; Liang C; Zhou W
    Acad Radiol; 2021 Nov; 28 Suppl 1():S118-S127. PubMed ID: 33303346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning classification of inverted papilloma malignant transformation using 3D convolutional neural networks and magnetic resonance imaging.
    Liu GS; Yang A; Kim D; Hojel A; Voevodsky D; Wang J; Tong CCL; Ungerer H; Palmer JN; Kohanski MA; Nayak JV; Hwang PH; Adappa ND; Patel ZM
    Int Forum Allergy Rhinol; 2022 Aug; 12(8):1025-1033. PubMed ID: 34989484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using Deep Learning with Convolutional Neural Network Approach to Identify the Invasion Depth of Endometrial Cancer in Myometrium Using MR Images: A Pilot Study.
    Dong HC; Dong HK; Yu MH; Lin YH; Chang CC
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32824765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging: A preliminary study.
    Gao X; Wang X
    Diagn Interv Imaging; 2020 Feb; 101(2):91-100. PubMed ID: 31375430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI.
    Song Y; Zhang YD; Yan X; Liu H; Zhou M; Hu B; Yang G
    J Magn Reson Imaging; 2018 Dec; 48(6):1570-1577. PubMed ID: 29659067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study for glioma classification using deep convolutional neural networks.
    Özcan H; Emiroğlu BG; Sabuncuoğlu H; Özdoğan S; Soyer A; Saygı T
    Math Biosci Eng; 2021 Jan; 18(2):1550-1572. PubMed ID: 33757198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of MRI and added value of diffusion-weighted and gadolinium-enhanced MRI for the diagnosis of local recurrence from rectal cancer.
    Molinelli V; Angeretti MG; Duka E; Tarallo N; Bracchi E; Novario R; Fugazzola C
    Abdom Radiol (NY); 2018 Nov; 43(11):2903-2912. PubMed ID: 29541831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging].
    Xu JH; Zhou XM; Ma JL; Liu SS; Zhang MS; Zheng XF; Zhang XY; Liu GW; Zhang XX; Lu Y; Wang DS
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jun; 23(6):572-577. PubMed ID: 32521977
    [No Abstract]   [Full Text] [Related]  

  • 39. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep learning with convolutional neural network for estimation of the characterisation of coronary plaques: Validation using IB-IVUS.
    Masuda T; Nakaura T; Funama Y; Oda S; Okimoto T; Sato T; Noda N; Yoshiura T; Baba Y; Arao S; Hiratsuka J; Awai K
    Radiography (Lond); 2022 Feb; 28(1):61-67. PubMed ID: 34404578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.