BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 36250198)

  • 1. Methane Emission From Global Lakes: New Spatiotemporal Data and Observation-Driven Modeling of Methane Dynamics Indicates Lower Emissions.
    Johnson MS; Matthews E; Du J; Genovese V; Bastviken D
    J Geophys Res Biogeosci; 2022 Jul; 127(7):e2022JG006793. PubMed ID: 36250198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions.
    Matthews E; Johnson MS; Genovese V; Du J; Bastviken D
    Sci Rep; 2020 Jul; 10(1):12465. PubMed ID: 32719313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions.
    Rasilo T; Prairie YT; Del Giorgio PA
    Glob Chang Biol; 2015 Mar; 21(3):1124-39. PubMed ID: 25220765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significant methane ebullition from large shallow eutrophic lakes of the semi-arid region of northern China.
    Zhang L; Li X; Yu R; Geng Y; Sun L; Sun H; Li Y; Zhang Z; Zhang X; Lei X; Wang R; Lu C; Lu X
    J Environ Manage; 2023 Dec; 347():119093. PubMed ID: 37783080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The significant contribution of lake depth in regulating global lake diffusive methane emissions.
    Li M; Peng C; Zhu Q; Zhou X; Yang G; Song X; Zhang K
    Water Res; 2020 Apr; 172():115465. PubMed ID: 31972411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diel variability of methane emissions from lakes.
    Sieczko AK; Duc NT; Schenk J; Pajala G; Rudberg D; Sawakuchi HO; Bastviken D
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21488-21494. PubMed ID: 32817550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane bubbling from northern lakes: present and future contributions to the global methane budget.
    Walter KM; Smith LC; Chapin FS
    Philos Trans A Math Phys Eng Sci; 2007 Jul; 365(1856):1657-76. PubMed ID: 17513268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions.
    Wang G; Xia X; Liu S; Zhang L; Zhang S; Wang J; Xi N; Zhang Q
    Water Res; 2021 Feb; 189():116654. PubMed ID: 33242789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interannual, summer, and diel variability of CH
    Eugster W; DelSontro T; Shaver GR; Kling GW
    Environ Sci Process Impacts; 2020 Nov; 22(11):2181-2198. PubMed ID: 33078814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial-temporal variability of methane fluxes in lakes varying in latitude, area, and depth.
    Li L; Xue B
    Heliyon; 2023 Aug; 9(8):e18411. PubMed ID: 37554827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inland waters and their role in the carbon cycle of Alaska.
    Stackpoole SM; Butman DE; Clow DW; Verdin KL; Gaglioti BV; Genet H; Striegl RG
    Ecol Appl; 2017 Jul; 27(5):1403-1420. PubMed ID: 28376236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global methane and nitrous oxide emissions from inland waters and estuaries.
    Zheng Y; Wu S; Xiao S; Yu K; Fang X; Xia L; Wang J; Liu S; Freeman C; Zou J
    Glob Chang Biol; 2022 Aug; 28(15):4713-4725. PubMed ID: 35560967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances.
    Panneer Selvam B; Natchimuthu S; Arunachalam L; Bastviken D
    Glob Chang Biol; 2014 Nov; 20(11):3397-407. PubMed ID: 24623552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drivers of spatial and seasonal variations of CO
    Sun H; Yu R; Liu X; Cao Z; Li X; Zhang Z; Wang J; Zhuang S; Ge Z; Zhang L; Sun L; Lorke A; Yang J; Lu C; Lu X
    Water Res; 2022 Aug; 222():118916. PubMed ID: 35921715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying groundwater carbon dioxide and methane fluxes to an urban freshwater lake using radon measurements.
    Sadat-Noori M; Rutlidge H; Andersen MS; Glamore W
    Sci Total Environ; 2021 Nov; 797():149184. PubMed ID: 34346371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High methane emissions from thermokarst lakes on the Tibetan Plateau are largely attributed to ebullition fluxes.
    Wang L; Du Z; Wei Z; Xu Q; Feng Y; Lin P; Lin J; Chen S; Qiao Y; Shi J; Xiao C
    Sci Total Environ; 2021 Dec; 801():149692. PubMed ID: 34428650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane ebullition fluxes and temperature sensitivity in a shallow lake.
    Xun F; Feng M; Ma S; Chen H; Zhang W; Mao Z; Zhou Y; Xiao Q; Wu QL; Xing P
    Sci Total Environ; 2024 Feb; 912():169589. PubMed ID: 38151123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minor methane emissions from an Alpine hydropower reservoir based on monitoring of diel and seasonal variability.
    Sollberger S; Wehrli B; Schubert CJ; DelSontro T; Eugster W
    Environ Sci Process Impacts; 2017 Oct; 19(10):1278-1291. PubMed ID: 28840207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland.
    McNicol G; Sturtevant CS; Knox SH; Dronova I; Baldocchi DD; Silver WL
    Glob Chang Biol; 2017 Jul; 23(7):2768-2782. PubMed ID: 27888548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane budget of East Asia, 1990-2015: A bottom-up evaluation.
    Ito A; Tohjima Y; Saito T; Umezawa T; Hajima T; Hirata R; Saito M; Terao Y
    Sci Total Environ; 2019 Aug; 676():40-52. PubMed ID: 31029899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.