These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 36250209)

  • 1. Erratum: HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing.
    Liu N; Zhou L; Lin G; Hu Y; Jiao Y; Wang Y; Liu J; Yang S; Yao S
    Mol Ther Nucleic Acids; 2022 Dec; 30():173. PubMed ID: 36250209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing.
    Liu N; Zhou L; Lin G; Hu Y; Jiao Y; Wang Y; Liu J; Yang S; Yao S
    Mol Ther Nucleic Acids; 2022 Sep; 29():36-46. PubMed ID: 35784015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: Inflammation conditional genome editing mediated by the CRISPR-Cas9 system.
    Yuan T; Tang H; Xu X; Shao J; Wu G; Cho YC; Ping Y; Liang G
    iScience; 2023 Jul; 26(7):107251. PubMed ID: 37456830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HDAC inhibitors improve CRISPR-mediated HDR editing efficiency in iPSCs.
    Zhang JP; Yang ZX; Zhang F; Fu YW; Dai XY; Wen W; Zhang B; Choi H; Chen W; Brown M; Baylink D; Zhang L; Qiu H; Wang C; Cheng T; Zhang XB
    Sci China Life Sci; 2021 Sep; 64(9):1449-1462. PubMed ID: 33420926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Intein-Mediated Split-nCas9 System for Base Editing in Plants.
    Yuan G; Lu H; De K; Hassan MM; Liu Y; Li Y; Muchero W; Abraham PE; Tuskan GA; Yang X
    ACS Synth Biol; 2022 Jul; 11(7):2513-2517. PubMed ID: 35767601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion of the prime editing modality with Cas9 from Francisella novicida.
    Oh Y; Lee WJ; Hur JK; Song WJ; Lee Y; Kim H; Gwon LW; Kim YH; Park YH; Kim CH; Lim KS; Song BS; Huh JW; Kim SU; Jun BH; Jung C; Lee SH
    Genome Biol; 2022 Apr; 23(1):92. PubMed ID: 35410288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing CRISPR/Cas9 Editing of Repetitive Single Nucleotide Variants.
    Usher I; Ligammari L; Ahrabi S; Hepburn E; Connolly C; Bond GL; Flanagan AM; Cottone L
    Front Genome Ed; 2022; 4():932434. PubMed ID: 35865001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction of mutations in plants with prime editing.
    Hao L; Pu X; Song J
    Methods; 2021 Oct; 194():83-93. PubMed ID: 33774158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing.
    Liu B; Chen S; Rose A; Chen D; Cao F; Zwinderman M; Kiemel D; Aïssi M; Dekker FJ; Haisma HJ
    Nucleic Acids Res; 2020 Jan; 48(2):517-532. PubMed ID: 31799598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum: Suppression of RNA editing by miR-17 inhibits the stemness of melanoma stem cells.
    Zhang Y; Yang X; Cui Y; Zhang X
    Mol Ther Nucleic Acids; 2024 Sep; 35(3):102288. PubMed ID: 39176172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prime editing in plants and mammalian cells: Mechanism, achievements, limitations, and future prospects.
    Hillary VE; Ceasar SA
    Bioessays; 2022 Sep; 44(9):e2200032. PubMed ID: 35750651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing.
    Aquino-Jarquin G
    Mol Genet Metab; 2021; 134(1-2):77-86. PubMed ID: 34391646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter.
    Li JW; Zeng T; Xu ZZ; Li JJ; Hu H; Yu Q; Zhou L; Zheng RR; Luo J; Wang CY
    Plant Methods; 2022 Mar; 18(1):32. PubMed ID: 35292048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A straightforward plant prime editing system enabled highly efficient precise editing of rice Waxy gene.
    Li Z; Ma R; Liu D; Wang M; Zhu T; Deng Y
    Plant Sci; 2022 Oct; 323():111400. PubMed ID: 35905895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 Editing: Sparking Discussion on Safety in Light of the Need for New Therapeutics.
    Carlaw TM; Zhang LH; Ross CJD
    Hum Gene Ther; 2020 Aug; 31(15-16):794-807. PubMed ID: 32586150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant-Based Biosensors for Detecting CRISPR-Mediated Genome Engineering.
    Yuan G; Hassan MM; Yao T; Lu H; Vergara MM; Labbé JL; Muchero W; Pan C; Chen JG; Tuskan GA; Qi Y; Abraham PE; Yang X
    ACS Synth Biol; 2021 Dec; 10(12):3600-3603. PubMed ID: 34878784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erratum: Corrigendum: The Cbr-DPY-10(Arg92Cys) modification is a reliable co-conversion marker for CRISPR/Cas9 genome editing in
    MicroPubl Biol; 2024; 2024():. PubMed ID: 38344071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient SSA-mediated precise genome editing using CRISPR/Cas9.
    Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z
    FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.