These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36250373)

  • 1. Relationship Between Intestinal Slow-waves, Spike-bursts, and Motility, as Defined Through High-resolution Electrical and Video Mapping.
    Kuruppu S; Cheng LK; Avci R; Angeli-Gordon TR; Paskaranandavadivel N
    J Neurogastroenterol Motil; 2022 Oct; 28(4):664-677. PubMed ID: 36250373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromechanical Response of Mesenteric Ischemia Defined Through Simultaneous High-Resolution Bioelectrical and Video Mapping.
    Kuruppu S; Cheng LK; Angeli-Gordon TR; Avci R; Paskaranandavadivel N
    Ann Biomed Eng; 2024 Mar; 52(3):588-599. PubMed ID: 37962674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution Mapping of Intestinal Spike Bursts and Motility.
    Kuruppu S; Cheng LK; Angeli TR; Avci R; Paskaranandavadivel N
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1779-1782. PubMed ID: 33018343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra-operative high-resolution mapping of slow wave propagation in the human jejunum: Feasibility and initial results.
    Angeli TR; O'Grady G; Vather R; Bissett IP; Cheng LK
    Neurogastroenterol Motil; 2018 Jul; 30(7):e13310. PubMed ID: 29493080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bioelectrical conduction system around the ileocecal junction defined through in vivo high-resolution mapping in rabbits.
    Miller KJW; Cheng LK; Angeli-Gordon TR; Avci R; Paskaranandavadivel N
    Am J Physiol Gastrointest Liver Physiol; 2022 Oct; 323(4):G318-G330. PubMed ID: 35916409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Framework for Spatiotemporal Analysis of Gastrointestinal Spike Burst Propagation.
    Kuruppu S; Cheng LK; Angeli TR; Avci R; Paskaranandavadivel N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4619-4622. PubMed ID: 31946893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine.
    Angeli TR; O'Grady G; Du P; Paskaranandavadivel N; Pullan AJ; Bissett IP; Cheng LK
    Neurogastroenterol Motil; 2013 May; 25(5):e304-14. PubMed ID: 23489929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic slow-wave interactions in the rabbit small intestine defined using high-resolution mapping.
    Cherian Abraham A; Cheng LK; Angeli TR; Alighaleh S; Paskaranandavadivel N
    Neurogastroenterol Motil; 2019 Sep; 31(9):e13670. PubMed ID: 31250520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and Automated Analysis Techniques for High-resolution Electrical Mapping of Small Intestine Slow Wave Activity.
    Angeli TR; O'Grady G; Paskaranandavadivel N; Erickson JC; Du P; Pullan AJ; Bissett IP; Cheng LK
    J Neurogastroenterol Motil; 2013 Apr; 19(2):179-91. PubMed ID: 23667749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similarities and differences in the propagation of slow waves and peristaltic waves.
    Lammers WJ; Stephen B; Slack JR
    Am J Physiol Gastrointest Liver Physiol; 2002 Sep; 283(3):G778-86. PubMed ID: 12181194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motility of the large intestine and flow of digesta in pigs.
    Hipper K; Ehrlein HJ
    Res Vet Sci; 2001 Oct; 71(2):93-100. PubMed ID: 11883896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurogenic and myogenic patterns of electrical activity in isolated intact mouse colon.
    Hibberd TJ; Costa M; Travis L; Brookes SJH; Wattchow DA; Feng J; Hu H; Spencer NJ
    Neurogastroenterol Motil; 2017 Oct; 29(10):1-12. PubMed ID: 28418103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal coupling between slow waves and pendular contractions.
    Lammers WJ
    Am J Physiol Gastrointest Liver Physiol; 2005 Nov; 289(5):G898-903. PubMed ID: 16020658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship of electrical slow wave and spike bursts in the dog jejunum in vivo.
    Mendel C; Pousse A; Grenier JF
    Can J Physiol Pharmacol; 1984 Oct; 62(10):1315-9. PubMed ID: 6509379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase lock of electrical slow waves and spike bursts in cat duodenum.
    Sancholuz AR; Croley TE II; Christensen J; Macagno EO; Glover JR
    Am J Physiol; 1975 Sep; 229(3):608-12. PubMed ID: 1211454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
    Berry R; Paskaranandavadivel N; Du P; Trew ML; O'Grady G; Windsor JA; Cheng LK
    Surg Endosc; 2017 Jan; 31(1):477-486. PubMed ID: 27129554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical activities of the muscle layers of the canine colon.
    El-Sharkawy TY
    J Physiol; 1983 Sep; 342():67-83. PubMed ID: 6631753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal electrical and motility mapping of distension-induced propagating oscillations in the murine small intestine.
    Seerden TC; Lammers WJ; De Winter BY; De Man JG; Pelckmans PA
    Am J Physiol Gastrointest Liver Physiol; 2005 Dec; 289(6):G1043-51. PubMed ID: 16099869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping.
    Egbuji JU; O'Grady G; Du P; Cheng LK; Lammers WJ; Windsor JA; Pullan AJ
    Neurogastroenterol Motil; 2010 Oct; 22(10):e292-300. PubMed ID: 20618830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal and circumferential spread of spike bursts in canine jejunum in vivo.
    Dusdieker NS; Summers RW
    Am J Physiol; 1980 Oct; 239(4):G311-G318. PubMed ID: 7425134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.