BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36250439)

  • 1. Amplitude modulating frequency overrides carrier frequency in tACS-induced phosphene percept.
    Hsu CY; Liu TL; Lee DH; Yeh DR; Chen YH; Liang WK; Juan CH
    Hum Brain Mapp; 2023 Feb; 44(3):914-926. PubMed ID: 36250439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplitude modulated transcranial alternating current stimulation (AM-TACS) efficacy evaluation via phosphene induction.
    Thiele C; Zaehle T; Haghikia A; Ruhnau P
    Sci Rep; 2021 Nov; 11(1):22245. PubMed ID: 34782626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods to Compare Predicted and Observed Phosphene Experience in tACS Subjects.
    Indahlastari A; Kasinadhuni AK; Saar C; Castellano K; Mousa B; Chauhan M; Mareci TH; Sadleir RJ
    Neural Plast; 2018; 2018():8525706. PubMed ID: 30627150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphene Attributes Depend on Frequency and Intensity of Retinal tACS.
    Kvašňák E; Orendáčová M; Vránová J
    Physiol Res; 2022 Aug; 71(4):561-571. PubMed ID: 35770470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-dependent and montage-based differences in phosphene perception thresholds via transcranial alternating current stimulation.
    Evans ID; Palmisano S; Loughran SP; Legros A; Croft RJ
    Bioelectromagnetics; 2019 Sep; 40(6):365-374. PubMed ID: 31338856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting alpha-band oscillations in a cortical model with amplitude-modulated high-frequency transcranial electric stimulation.
    Negahbani E; Kasten FH; Herrmann CS; Fröhlich F
    Neuroimage; 2018 Jun; 173():3-12. PubMed ID: 29427848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation artifact source separation (SASS) for assessing electric brain oscillations during transcranial alternating current stimulation (tACS).
    Haslacher D; Nasr K; Robinson SE; Braun C; Soekadar SR
    Neuroimage; 2021 Mar; 228():117571. PubMed ID: 33412281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds.
    Kanai R; Paulus W; Walsh V
    Clin Neurophysiol; 2010 Sep; 121(9):1551-1554. PubMed ID: 20382069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS).
    Kasten FH; Negahbani E; Fröhlich F; Herrmann CS
    Neuroimage; 2018 Oct; 179():134-143. PubMed ID: 29860086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurosensory effects of transcranial alternating current stimulation.
    Raco V; Bauer R; Olenik M; Brkic D; Gharabaghi A
    Brain Stimul; 2014; 7(6):823-31. PubMed ID: 25442154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal and Cortical Contributions to Phosphenes During Transcranial Electrical Current Stimulation.
    Evans ID; Palmisano S; Croft RJ
    Bioelectromagnetics; 2021 Feb; 42(2):146-158. PubMed ID: 33440463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating Current Density Modeling of Non-Invasive Eye and Brain Electrical Stimulation Using Phosphene Thresholds.
    Sabel BA; Kresinsky A; Cardenas-Morales L; Haueisen J; Hunold A; Dannhauer M; Antal A
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2133-2141. PubMed ID: 34648453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: A systematic review.
    Schutter DJ
    Neuroimage; 2016 Oct; 140():83-8. PubMed ID: 26453929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the montage for cerebellar transcranial alternating current stimulation (tACS): a combined computational and experimental study.
    Sadeghihassanabadi F; Misselhorn J; Gerloff C; Zittel S
    J Neural Eng; 2022 May; 19(2):. PubMed ID: 35421852
    [No Abstract]   [Full Text] [Related]  

  • 15. Boosting visual perceptual learning by transcranial alternating current stimulation over the visual cortex at alpha frequency.
    He Q; Yang XY; Gong B; Bi K; Fang F
    Brain Stimul; 2022; 15(3):546-553. PubMed ID: 35278689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcranial alternating current stimulation modulates spontaneous low frequency fluctuations as measured with fMRI.
    Cabral-Calderin Y; Williams KA; Opitz A; Dechent P; Wilke M
    Neuroimage; 2016 Nov; 141():88-107. PubMed ID: 27393419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal origin of phosphenes to transcranial alternating current stimulation.
    Schutter DJ; Hortensius R
    Clin Neurophysiol; 2010 Jul; 121(7):1080-4. PubMed ID: 20188625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of dynamic visual acuity using transcranial alternating current stimulation with gamma burst entrained on alpha wave troughs.
    Park J; Lee S; Choi D; Im CH
    Behav Brain Funct; 2023 Aug; 19(1):13. PubMed ID: 37620941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation.
    Turi Z; Ambrus GG; Janacsek K; Emmert K; Hahn L; Paulus W; Antal A
    Restor Neurol Neurosci; 2013; 31(3):275-85. PubMed ID: 23478342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of montages of transcranial alternating current stimulation on occipital responses-a sham-controlled pilot study.
    Wang J; Choi KY; Thompson B; Chan HHL; Cheong AMY
    Front Psychiatry; 2023; 14():1273044. PubMed ID: 38328519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.