These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 36250484)

  • 21. Bilayered extracellular matrix derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair.
    Browe DC; Díaz-Payno PJ; Freeman FE; Schipani R; Burdis R; Ahern DP; Nulty JM; Guler S; Randall LD; Buckley CT; Brama PAJ; Kelly DJ
    Acta Biomater; 2022 Apr; 143():266-281. PubMed ID: 35278686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications.
    Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating Initial Integration of Cell-Based Chondrogenic Constructs in Human Osteochondral Explants.
    Kleuskens MWA; Crispim JF; van Donkelaar CC; Janssen RPA; Ito K
    Tissue Eng Part C Methods; 2022 Jan; 28(1):34-44. PubMed ID: 35018813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of tissue-engineered cartilage with host cartilage: an in vitro model.
    Theodoropoulos JS; De Croos JN; Park SS; Pilliar R; Kandel RA
    Clin Orthop Relat Res; 2011 Oct; 469(10):2785-95. PubMed ID: 21403985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of decellularized cartilage matrix scaffolds combined with endometrial stem cell-derived osteocytes on osteochondral tissue engineering in rats.
    Bahrami N; Bordbar S; Hasanzadeh E; Goodarzi A; Ai A; Mohamadnia A
    In Vitro Cell Dev Biol Anim; 2022 Jun; 58(6):480-490. PubMed ID: 35727496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies.
    Vainieri ML; Wahl D; Alini M; van Osch GJVM; Grad S
    Acta Biomater; 2018 Nov; 81():256-266. PubMed ID: 30273741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunology and cartilage regeneration.
    Smith B; Sigal IR; Grande DA
    Immunol Res; 2015 Dec; 63(1-3):181-6. PubMed ID: 26481914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering the biomechanical microenvironment of chondrocytes towards articular cartilage tissue engineering.
    Xu W; Zhu J; Hu J; Xiao L
    Life Sci; 2022 Nov; 309():121043. PubMed ID: 36206835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering.
    Tang C; Xu Y; Jin C; Min BH; Li Z; Pei X; Wang L
    Artif Organs; 2013 Dec; 37(12):E179-90. PubMed ID: 24251792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanomaterials/Nanocomposites for Osteochondral Tissue.
    Manoukian OS; Dieck C; Milne T; Dealy CN; Rudraiah S; Kumbar SG
    Adv Exp Med Biol; 2018; 1058():79-95. PubMed ID: 29691818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomaterial Integration in the Joint: Pathological Considerations, Immunomodulation, and the Extracellular Matrix.
    von Mentzer U; Corciulo C; Stubelius A
    Macromol Biosci; 2022 Jul; 22(7):e2200037. PubMed ID: 35420256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Basic fibroblast growth factor and agarose gel promote ​the ability of immune privilege of allogeneic cartilage transplantation in rats.
    Yang F; Zhang Y; Liu B; Cao M; Yang J; Tian F; Yang P; Qin K; Zhao D
    J Orthop Translat; 2020 May; 22():73-80. PubMed ID: 32440502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sol gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs.
    Lee WD; Gawri R; Pilliar RM; Stanford WL; Kandel RA
    Acta Biomater; 2017 Oct; 62():352-361. PubMed ID: 28818689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extracellular matrix derived from allogenic decellularized bone marrow mesenchymal stem cell sheets for the reconstruction of osteochondral defects in rabbits.
    Wang Z; Han L; Sun T; Ma J; Sun S; Ma L; Wu B
    Acta Biomater; 2020 Dec; 118():54-68. PubMed ID: 33068746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cartilage regeneration using decellularized cartilage matrix: Long-term comparison of subcutaneous and intranasal placement in a rabbit model.
    von Bomhard A; Elsaesser A; Riepl R; Pippich K; Faust J; Schwarz S; Koerber L; Breiter R; Rotter N
    J Craniomaxillofac Surg; 2019 Apr; 47(4):682-694. PubMed ID: 30733134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical characterisation of the human nasal cartilages; implications for tissue engineering.
    Griffin MF; Premakumar Y; Seifalian AM; Szarko M; Butler PE
    J Mater Sci Mater Med; 2016 Jan; 27(1):11. PubMed ID: 26676857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Hypothesis of immune privilege of the cornea and pathophysiology of graft rejection].
    Trufanov SV; Subbot AM; Malozhen SA; Krakhmaleva DA
    Vestn Oftalmol; 2016; 132(5):117-124. PubMed ID: 28635736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Septal cartilage tissue engineering: new horizons.
    Greene JJ; Watson D
    Facial Plast Surg; 2010 Oct; 26(5):396-404. PubMed ID: 20853231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.