These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36250610)

  • 21. A self-assembled polyjuglanin nanoparticle loaded with doxorubicin and anti-Kras siRNA for attenuating multidrug resistance in human lung cancer.
    Wen ZM; Jie J; Zhang Y; Liu H; Peng LP
    Biochem Biophys Res Commun; 2017 Dec; 493(4):1430-1437. PubMed ID: 28958938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intracellular Co-delivery of native antibody and siRNA for combination therapy by using biodegradable silica nanocapsules.
    Yuan P; Yang F; Liew SS; Yan J; Dong X; Wang J; Du S; Mao X; Gao L; Yao SQ
    Biomaterials; 2022 Feb; 281():121376. PubMed ID: 35065331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CaP coated mesoporous polydopamine nanoparticles with responsive membrane permeation ability for combined photothermal and siRNA therapy.
    Wang Z; Wang L; Prabhakar N; Xing Y; Rosenholm JM; Zhang J; Cai K
    Acta Biomater; 2019 Mar; 86():416-428. PubMed ID: 30611792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pH/Redox Dual-Responsive Polyplex with Effective Endosomal Escape for Codelivery of siRNA and Doxorubicin against Drug-Resistant Cancer Cells.
    Gao Y; Jia L; Wang Q; Hu H; Zhao X; Chen D; Qiao M
    ACS Appl Mater Interfaces; 2019 May; 11(18):16296-16310. PubMed ID: 30997984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lanthanide-integrated supramolecular polymeric nanoassembly with multiple regulation characteristics for multidrug-resistant cancer therapy.
    Jin W; Wang Q; Wu M; Li Y; Tang G; Ping Y; Chu PK
    Biomaterials; 2017 Jun; 129():83-97. PubMed ID: 28329693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic-Based Holonomic Constraints of siRNA in the Kernel of Lipid/Polymer Hybrid Nanoassemblies for Improving Stable and Safe In Vivo Delivery.
    Wei W; Sun J; Guo XY; Chen X; Wang R; Qiu C; Zhang HT; Pang WH; Wang JC; Zhang Q
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14839-14854. PubMed ID: 32182035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Erythrocyte Membrane-Camouflaged IR780 and DTX Coloading Polymeric Nanoparticles for Imaging-Guided Cancer Photo-Chemo Combination Therapy.
    Yang Q; Xiao Y; Yin Y; Li G; Peng J
    Mol Pharm; 2019 Jul; 16(7):3208-3220. PubMed ID: 31145853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prolonged blood circulation outperforms active targeting for nanocarriers-mediated enhanced hepatocellular carcinoma therapy in vivo.
    Wang YQ; Huang C; Ye PJ; Long JR; Xu CH; Liu Y; Ling XL; Lv SY; He DX; Wei H; Yu CY
    J Control Release; 2022 Jul; 347():400-413. PubMed ID: 35577150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy.
    Li Y; Liu G; Ma J; Lin J; Lin H; Su G; Chen D; Ye S; Chen X; Zhu X; Hou Z
    J Control Release; 2017 Jul; 258():95-107. PubMed ID: 28501673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-delivery of VEGF siRNA and Etoposide for Enhanced Anti-angiogenesis and Anti-proliferation Effect
    Li F; Wang Y; Chen WL; Wang DD; Zhou YJ; You BG; Liu Y; Qu CX; Yang SD; Chen MT; Zhang XN
    Theranostics; 2019; 9(20):5886-5898. PubMed ID: 31534526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanometer-scale siRNA carriers incorporating peptidomimetic oligomers: physical characterization and biological activity.
    Konca YU; Kirshenbaum K; Zuckermann RN
    Int J Nanomedicine; 2014; 9():2271-85. PubMed ID: 24872690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neutralization of negative charges of siRNA results in improved safety and efficient gene silencing activity of lipid nanoparticles loaded with high levels of siRNA.
    Sato Y; Matsui H; Sato R; Harashima H
    J Control Release; 2018 Aug; 284():179-187. PubMed ID: 29936118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smart Polymeric Nanoparticles with pH-Responsive and PEG-Detachable Properties (II): Co-Delivery of Paclitaxel and VEGF siRNA for Synergistic Breast Cancer Therapy in Mice.
    Jin M; Hou Y; Quan X; Chen L; Gao Z; Huang W
    Int J Nanomedicine; 2021; 16():5479-5494. PubMed ID: 34413645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGylated polycaprolactone nanoparticles in siRNA delivery.
    Lin D; Huang Y; Jiang Q; Zhang W; Yue X; Guo S; Xiao P; Du Q; Xing J; Deng L; Liang Z; Dong A
    Biomaterials; 2011 Nov; 32(33):8730-42. PubMed ID: 21885115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repurposing cationic amphiphilic drugs as adjuvants to induce lysosomal siRNA escape in nanogel transfected cells.
    Joris F; De Backer L; Van de Vyver T; Bastiancich C; De Smedt SC; Raemdonck K
    J Control Release; 2018 Jan; 269():266-276. PubMed ID: 29146245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles.
    Wu Y; Zhang Y; Zhang W; Sun C; Wu J; Tang J
    Colloids Surf B Biointerfaces; 2016 Feb; 138():60-9. PubMed ID: 26655793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles.
    Gong C; Yu X; Zhang W; Han L; Wang R; Wang Y; Gao S; Yuan Y
    J Nanobiotechnology; 2021 Feb; 19(1):58. PubMed ID: 33632231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cationic Amphiphilic Drugs Boost the Lysosomal Escape of Small Nucleic Acid Therapeutics in a Nanocarrier-Dependent Manner.
    Van de Vyver T; Bogaert B; De Backer L; Joris F; Guagliardo R; Van Hoeck J; Merckx P; Van Calenbergh S; Ramishetti S; Peer D; Remaut K; De Smedt SC; Raemdonck K
    ACS Nano; 2020 Apr; 14(4):4774-4791. PubMed ID: 32250113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A bionic "Trojan horse"-like gene delivery system hybridized with tumor and macrophage cell membrane for cancer therapy.
    Shen T; Yang S; Qu X; Chen Z; Zeng L; Sun X; Lin Y; Luo M; Lei B; Yue C; Ma C; Hu N; Wang W; Zhang L
    J Control Release; 2023 Jun; 358():204-218. PubMed ID: 37121518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Starvation-amplified CO generation for enhanced cancer therapy via an erythrocyte membrane-biomimetic gas nanofactory.
    Wang Y; Liu Z; Wang H; Meng Z; Wang Y; Miao W; Li X; Ren H
    Acta Biomater; 2019 Jul; 92():241-253. PubMed ID: 31078766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.