These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36250674)

  • 21. Soloist evaluations of six Old Italian and six new violins.
    Fritz C; Curtin J; Poitevineau J; Borsarello H; Wollman I; Tao FC; Ghasarossian T
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7224-9. PubMed ID: 24711376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Materials Engineering of Violin Soundboards by Stradivari and Guarneri.
    Su CK; Chen SY; Chung JH; Li GC; Brandmair B; Huthwelker T; Fulton JL; Borca CN; Huang SJ; Nagyvary J; Tseng HH; Chang CH; Chung DT; Vescovi R; Tsai YS; Cai W; Lu BJ; Xu JW; Hsu CS; Wu JJ; Li HZ; Jheng YK; Lo SF; Chen HM; Hsieh YT; Chung PW; Chen CS; Sun YC; Chan JCC; Tai HC
    Angew Chem Int Ed Engl; 2021 Aug; 60(35):19144-19154. PubMed ID: 34062043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AFM-IR and s-SNOM-IR measurements of chemically addressable monolayers on Au nanoparticles.
    Rikanati L; Dery S; Gross E
    J Chem Phys; 2021 Nov; 155(20):204704. PubMed ID: 34852499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling.
    Wang H; Wang L; Xu XG
    Nat Commun; 2016 Oct; 7():13212. PubMed ID: 27748360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A cryogenic scattering-type scanning near-field optical microscope.
    Yang HU; Hebestreit E; Josberger EE; Raschke MB
    Rev Sci Instrum; 2013 Feb; 84(2):023701. PubMed ID: 23464212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The nature of the extraordinary finish of Stradivari's instruments.
    Echard JP; Bertrand L; von Bohlen A; Le Hô AS; Paris C; Bellot-Gurlet L; Soulier B; Lattuati-Derieux A; Thao S; Robinet L; Lavédrine B; Vaiedelich S
    Angew Chem Int Ed Engl; 2010; 49(1):197-201. PubMed ID: 19967687
    [No Abstract]   [Full Text] [Related]  

  • 28. Development of a cryogenic passive-scattering-type near-field optical microscopy system.
    Lin KT; Weng Q; Kim S; Komiyama S; Kajihara Y
    Rev Sci Instrum; 2023 Feb; 94(2):023701. PubMed ID: 36859006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional near-field analysis through peak force scattering-type near-field optical microscopy.
    Wang H; Li J; Edgar JH; Xu XG
    Nanoscale; 2020 Jan; 12(3):1817-1825. PubMed ID: 31899464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modern Scattering-Type Scanning Near-Field Optical Microscopy for Advanced Material Research.
    Chen X; Hu D; Mescall R; You G; Basov DN; Dai Q; Liu M
    Adv Mater; 2019 Jun; 31(24):e1804774. PubMed ID: 30932221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near-field terahertz nonlinear optics with blue light.
    Pizzuto A; Ma P; Mittleman DM
    Light Sci Appl; 2023 Apr; 12(1):96. PubMed ID: 37072386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Infrared scanning near-field optical microscopy investigates order and clusters in model membranes.
    Generosi J; Margaritondo G; Sanghera JS; Aggarwal ID; Tolk NH; Piston DW; Castellano AC; Cricenti A
    J Microsc; 2008 Feb; 229(Pt 2):259-63. PubMed ID: 18304082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes.
    Esslinger M; Vogelgesang R
    ACS Nano; 2012 Sep; 6(9):8173-82. PubMed ID: 22897563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes.
    Hermann RJ; Gordon MJ
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():365-387. PubMed ID: 29596000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the micro- and nanoscopic properties of dental materials using infrared spectroscopy: A proof-of-principle study.
    Beddoe M; Gölz T; Barkey M; Bau E; Godejohann M; Maier SA; Keilmann F; Moldovan M; Prodan D; Ilie N; Tittl A
    Acta Biomater; 2023 Sep; 168():309-322. PubMed ID: 37479158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amplitude- and Phase-Resolved Infrared Nanoimaging and Nanospectroscopy of Polaritons in a Liquid Environment.
    Virmani D; Bylinkin A; Dolado I; Janzen E; Edgar JH; Hillenbrand R
    Nano Lett; 2021 Feb; 21(3):1360-1367. PubMed ID: 33511844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Near-field microscopy: throwing light on the nanoworld.
    Richards D
    Philos Trans A Math Phys Eng Sci; 2003 Dec; 361(1813):2843-57. PubMed ID: 14667301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Liquid Infrared Scattering Scanning Near-Field Optical Microscopy for Chemical and Biological Nanoimaging.
    O'Callahan BT; Park KD; Novikova IV; Jian T; Chen CL; Muller EA; El-Khoury PZ; Raschke MB; Lea AS
    Nano Lett; 2020 Jun; 20(6):4497-4504. PubMed ID: 32356991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative Measurement of Local Infrared Absorption and Dielectric Function with Tip-Enhanced Near-Field Microscopy.
    Govyadinov AA; Amenabar I; Huth F; Carney PS; Hillenbrand R
    J Phys Chem Lett; 2013 May; 4(9):1526-31. PubMed ID: 26282309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-invasive identification of organic materials in historical stringed musical instruments by reflection infrared spectroscopy: a methodological approach.
    Invernizzi C; Daveri A; Vagnini M; Malagodi M
    Anal Bioanal Chem; 2017 May; 409(13):3281-3288. PubMed ID: 28341985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.