These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36250792)

  • 1. CEDA: integrating gene expression data with CRISPR-pooled screen data identifies essential genes with higher expression.
    Zhao Y; Yu L; Wu X; Li H; Coombes KR; Au KF; Cheng L; Li L
    Bioinformatics; 2022 Nov; 38(23):5245-5252. PubMed ID: 36250792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-binomial modeling of CRISPR pooled screen data identifies target genes with greater sensitivity and fewer false negatives.
    Jeong HH; Kim SY; Rousseaux MWC; Zoghbi HY; Liu Z
    Genome Res; 2019 Jun; 29(6):999-1008. PubMed ID: 31015259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPhieRmix: a hierarchical mixture model for CRISPR pooled screens.
    Daley TP; Lin Z; Lin X; Liu Y; Wong WH; Qi LS
    Genome Biol; 2018 Oct; 19(1):159. PubMed ID: 30296940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accounting for small variations in the tracrRNA sequence improves sgRNA activity predictions for CRISPR screening.
    DeWeirdt PC; McGee AV; Zheng F; Nwolah I; Hegde M; Doench JG
    Nat Commun; 2022 Sep; 13(1):5255. PubMed ID: 36068235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovering false negatives in CRISPR fitness screens with JLOE.
    Dede M; Hart T
    Nucleic Acids Res; 2023 Feb; 51(4):1637-1651. PubMed ID: 36727483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Comparison of CRISPR and shRNA Screens to Identify Essential Genes Using a Graph-Based Unsupervised Learning Model.
    Ding Y; Denomy C; Freywald A; Pan Y; Vizeacoumar FJ; Vizeacoumar FS; Wu FX
    Cells; 2024 Oct; 13(19):. PubMed ID: 39404416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation.
    Liu H; Wei Z; Dominguez A; Li Y; Wang X; Qi LS
    Bioinformatics; 2015 Nov; 31(22):3676-8. PubMed ID: 26209430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new Bayesian factor analysis method improves detection of genes and biological processes affected by perturbations in single-cell CRISPR screening.
    Zhou Y; Luo K; Liang L; Chen M; He X
    Nat Methods; 2023 Nov; 20(11):1693-1703. PubMed ID: 37770710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs.
    Bayat H; Omidi M; Rajabibazl M; Sabri S; Rahimpour A
    J Microbiol Biotechnol; 2017 Feb; 27(2):207-218. PubMed ID: 27840399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General guidelines for CRISPR/Cas-based genome editing in plants.
    Aksoy E; Yildirim K; Kavas M; Kayihan C; Yerlikaya BA; Çalik I; Sevgen İ; Demirel U
    Mol Biol Rep; 2022 Dec; 49(12):12151-12164. PubMed ID: 36107373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Essential Genes Using Sequential CRISPR and siRNA Screens.
    DeHart L; Yockey OP; Bakke J
    Methods Mol Biol; 2022; 2377():89-107. PubMed ID: 34709612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MAUDE: inferring expression changes in sorting-based CRISPR screens.
    de Boer CG; Ray JP; Hacohen N; Regev A
    Genome Biol; 2020 Jun; 21(1):134. PubMed ID: 32493396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Nucleoside Modifications in Guide RNAs Can Modulate the Activity of the CRISPR-Cas9 System
    Prokhorova DV; Vokhtantsev IP; Tolstova PO; Zhuravlev ES; Kulishova LM; Zharkov DO; Stepanov GA
    CRISPR J; 2022 Dec; 5(6):799-812. PubMed ID: 36350691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrayed CRISPR screen with image-based assay reliably uncovers host genes required for coxsackievirus infection.
    Kim HS; Lee K; Kim SJ; Cho S; Shin HJ; Kim C; Kim JS
    Genome Res; 2018 Jun; 28(6):859-868. PubMed ID: 29712754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 : single-guide RNA (sgRNA) delivery system in a goat model.
    Huang Y; Ding Y; Liu Y; Zhou S; Ding Q; Yan H; Ma B; Zhao X; Wang X; Chen Y
    Reprod Fertil Dev; 2019 Aug; 31(9):1533-1537. PubMed ID: 31079595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo CRISPR screening for novel noncoding RNA functional targets in glioblastoma models.
    Attenello FJ; Tsung K; Bishara I; Loh YE; Chen TC
    J Neurosci Res; 2021 Sep; 99(9):2029-2045. PubMed ID: 33969526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research advances on the development and application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein system].
    Tan JJ; Peng YZ; Huang GT
    Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):681-687. PubMed ID: 34304411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection.
    Kim HS; Lee K; Bae S; Park J; Lee CK; Kim M; Kim E; Kim M; Kim S; Kim C; Kim JS
    J Biol Chem; 2017 Jun; 292(25):10664-10671. PubMed ID: 28446605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ShrinkCRISPR: a flexible method for differential fitness analysis of CRISPR-Cas9 screen data.
    Tissier RLM; Schie JJMV; Wolthuis RMF; Lange J; Menezes R
    BMC Bioinformatics; 2023 Feb; 24(1):36. PubMed ID: 36732720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.