These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 36250804)
1. Discovery of malathion resistance QTL in Drosophila melanogaster using a bulked phenotyping approach. Macdonald SJ; Long AD G3 (Bethesda); 2022 Dec; 12(12):. PubMed ID: 36250804 [TBL] [Abstract][Full Text] [Related]
2. Structural Variants and Selective Sweep Foci Contribute to Insecticide Resistance in the Battlay P; Leblanc PB; Green L; Garud NR; Schmidt JM; Fournier-Level A; Robin C G3 (Bethesda); 2018 Nov; 8(11):3489-3497. PubMed ID: 30190421 [TBL] [Abstract][Full Text] [Related]
3. Powerful, efficient QTL mapping in Drosophila melanogaster using bulked phenotyping and pooled sequencing. Macdonald SJ; Cloud-Richardson KM; Sims-West DJ; Long AD Genetics; 2022 Mar; 220(3):. PubMed ID: 35100395 [TBL] [Abstract][Full Text] [Related]
4. Selection for, and characterization of, malathion and zeta-cypermethrin resistance in vineyard-collected Drosophila melanogaster. Mertz RW; DeLorenzo S; Sun H; Loeb G; Scott JG Pest Manag Sci; 2023 Apr; 79(4):1623-1627. PubMed ID: 36562269 [TBL] [Abstract][Full Text] [Related]
5. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster. Battlay P; Schmidt JM; Fournier-Level A; Robin C G3 (Bethesda); 2016 Aug; 6(8):2573-81. PubMed ID: 27317781 [TBL] [Abstract][Full Text] [Related]
6. Loci Contributing to Boric Acid Toxicity in Two Reference Populations of Najarro MA; Hackett JL; Macdonald SJ G3 (Bethesda); 2017 Jun; 7(6):1631-1641. PubMed ID: 28592646 [TBL] [Abstract][Full Text] [Related]
7. The Beavis Effect in Next-Generation Mapping Panels in King EG; Long AD G3 (Bethesda); 2017 Jun; 7(6):1643-1652. PubMed ID: 28592647 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary changes in gene expression, coding sequence and copy-number at the Cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila. Harrop TW; Sztal T; Lumb C; Good RT; Daborn PJ; Batterham P; Chung H PLoS One; 2014; 9(1):e84879. PubMed ID: 24416303 [TBL] [Abstract][Full Text] [Related]
10. Signatures of Insecticide Selection in the Genome of Duneau D; Sun H; Revah J; San Miguel K; Kunerth HD; Caldas IV; Messer PW; Scott JG; Buchon N G3 (Bethesda); 2018 Nov; 8(11):3469-3480. PubMed ID: 30190420 [TBL] [Abstract][Full Text] [Related]
11. Identifying Loci Contributing to Natural Variation in Xenobiotic Resistance in Drosophila. Najarro MA; Hackett JL; Smith BR; Highfill CA; King EG; Long AD; Macdonald SJ PLoS Genet; 2015 Nov; 11(11):e1005663. PubMed ID: 26619284 [TBL] [Abstract][Full Text] [Related]
12. Genetic analysis of variation in lifespan using a multiparental advanced intercross Drosophila mapping population. Highfill CA; Reeves GA; Macdonald SJ BMC Genet; 2016 Aug; 17():113. PubMed ID: 27485207 [TBL] [Abstract][Full Text] [Related]
13. Genetic basis of cross-resistance to three organophosphate insecticides in Drosophila melanogaster (Diptera: Drosophilidae). Miyo T; Kono Y; Oguma Y J Econ Entomol; 2002 Oct; 95(5):871-7. PubMed ID: 12403411 [TBL] [Abstract][Full Text] [Related]
14. Insecticide resistance in Drosophila melanogaster in vineyards and evaluation of alternative insecticides. Mertz RW; Hesler S; Pfannenstiel LJ; Norris RH; Loeb G; Scott JG Pest Manag Sci; 2022 Mar; 78(3):1272-1278. PubMed ID: 34859943 [TBL] [Abstract][Full Text] [Related]
15. Fine-mapping nicotine resistance loci in Drosophila using a multiparent advanced generation inter-cross population. Marriage TN; King EG; Long AD; Macdonald SJ Genetics; 2014 Sep; 198(1):45-57. PubMed ID: 25236448 [TBL] [Abstract][Full Text] [Related]
16. Survey of malathion resistance and avermectin susceptibility in field populations of Drosophila melanogaster (Diptera: Drosophilidae) and D. simulans. Windelspecht M; Richmond RC; Cochrane BJ J Econ Entomol; 1998 Dec; 91(6):1245-52. PubMed ID: 9887681 [TBL] [Abstract][Full Text] [Related]
17. The association between malathion resistance and acetylcholinesterase in Drosophila melanogaster. Morton RA; Singh RS Biochem Genet; 1982 Feb; 20(1-2):179-98. PubMed ID: 6807282 [TBL] [Abstract][Full Text] [Related]
18. Seasonal fluctuation in susceptibility to insecticides within natural populations of Drosophila melanogaster. II. Features of genetic variation in susceptibility to organophosphate insecticides within natural populations of D. melanogaster. Miyo T; Oguma Y; Charlesworth B Genes Genet Syst; 2006 Aug; 81(4):273-85. PubMed ID: 17038799 [TBL] [Abstract][Full Text] [Related]
19. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance. Jones RT; Bakker SE; Stone D; Shuttleworth SN; Boundy S; McCart C; Daborn PJ; ffrench-Constant RH; van den Elsen JM Pest Manag Sci; 2010 Oct; 66(10):1106-15. PubMed ID: 20583201 [TBL] [Abstract][Full Text] [Related]
20. Quantitative trait locus mapping of pyrethroid resistance in Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Hawthorne DJ J Econ Entomol; 2003 Aug; 96(4):1021-30. PubMed ID: 14503571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]