These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36250805)

  • 1. A Vitamin B
    Knowles OJ; Johannissen LO; Crisenza GEM; Hay S; Leys D; Procter DJ
    Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202212158. PubMed ID: 36250805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid and selective methionine oxidative modification strategy.
    Zhang MQ; He PY; Hu JJ; Li YM
    J Pept Sci; 2023 Mar; 29(3):e3454. PubMed ID: 36181422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methionine-associated peptide α-amidation is directed both to the N- and the C-terminal amino acids.
    Sajapin J; Kulas A; Hellwig M
    J Pept Sci; 2022 Nov; 28(11):e3429. PubMed ID: 35694817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic Modification of Amino Acids, Peptides, and Proteins.
    Bottecchia C; Noël T
    Chemistry; 2019 Jan; 25(1):26-42. PubMed ID: 30063101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-soluble vitamins.
    Konings EJ;
    J AOAC Int; 2006; 89(1):285-8. PubMed ID: 16512258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemoselective Methionine Bioconjugation on a Polypeptide, Protein, and Proteome.
    Zang J; Chen Y; Zhu W; Lin S
    Biochemistry; 2020 Jan; 59(2):132-138. PubMed ID: 31592657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of multifunctional and multireactive polypeptides via methionine alkylation.
    Kramer JR; Deming TJ
    Biomacromolecules; 2012 Jun; 13(6):1719-23. PubMed ID: 22632141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for in silico assessment of Methionine oxidation risk in monoclonal antibodies: Improvement over the 2-shell model.
    Tavella D; Ouellette DR; Garofalo R; Zhu K; Xu J; Oloo EO; Negron C; Ihnat PM
    PLoS One; 2022; 17(12):e0279689. PubMed ID: 36580468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis.
    Kim J; Li BX; Huang RY; Qiao JX; Ewing WR; MacMillan DWC
    J Am Chem Soc; 2020 Dec; 142(51):21260-21266. PubMed ID: 33290649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosensitized amino acid degradation in the presence of riboflavin and its derivatives.
    Remucal CK; McNeill K
    Environ Sci Technol; 2011 Jun; 45(12):5230-7. PubMed ID: 21591753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A protein functionalization platform based on selective reactions at methionine residues.
    Taylor MT; Nelson JE; Suero MG; Gaunt MJ
    Nature; 2018 Oct; 562(7728):563-568. PubMed ID: 30323287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues.
    Bobrowski K; Hug GL; Pogocki D; Marciniak B; Schöneich C
    J Phys Chem B; 2007 Aug; 111(32):9608-20. PubMed ID: 17658786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site Covalent Modification of Methionyl Peptides for the Production of FRET Complexes.
    Jadhav PD; Shen J; Sammynaiken R; Reaney MJ
    Chemistry; 2015 Nov; 21(47):17023-34. PubMed ID: 26434760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of a Three-Electron Sulfur-Sulfur Bond as a Probe for Interaction between Side Chains of Methionine Residues.
    Filipiak P; Bobrowski K; Hug GL; Pogocki D; Schöneich C; Marciniak B
    J Phys Chem B; 2016 Sep; 120(36):9732-44. PubMed ID: 27513096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoselective synthesis of functional homocysteine residues in polypeptides and peptides.
    Gharakhanian EG; Deming TJ
    Chem Commun (Camb); 2016 Apr; 52(30):5336-9. PubMed ID: 27004992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cleavage cocktail for methionine-containing peptides.
    Huang H; Rabenstein DL
    J Pept Res; 1999 May; 53(5):548-53. PubMed ID: 10424350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of oxidized methionine residues in peptides containing two methionine residues by derivatization and matrix-assisted laser desorption/ionization mass spectrometry.
    Hollemeyer K; Heinzle E; Tholey A
    Proteomics; 2002 Nov; 2(11):1524-31. PubMed ID: 12442252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reduction of oxidized methionine residues in peptide thioesters with NH4I-Me2S.
    Hackenberger CP
    Org Biomol Chem; 2006 Jun; 4(11):2291-5. PubMed ID: 16729139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Easy Production of "Difficult Peptides" Using Cell-Free Protein Synthesis and a New Methionine Analogue as a Latent Peptide Cleavage Site.
    Fankhauser D; Alissandratos A; Liutkus M; Easton CJ
    Chemistry; 2021 Dec; 27(69):17487-17494. PubMed ID: 34651362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioorthogonal Metalloporphyrin-Catalyzed Selective Methionine Alkylation in the Lanthipeptide Nisin.
    Maaskant RV; Roelfes G
    Chembiochem; 2019 Jan; 20(1):57-61. PubMed ID: 30246492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.