These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 36251096)

  • 1. Gray water footprint evaluation of arsenic in Central China: from the perspective of health risk theory.
    Feng Y; Na L
    Environ Monit Assess; 2022 Oct; 194(12):901. PubMed ID: 36251096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved grey water footprint model based on uncertainty analysis.
    Li J; Lin M; Feng Y
    Sci Rep; 2023 May; 13(1):7100. PubMed ID: 37130911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial-temporal variation and driving factors decomposition of agricultural grey water footprint in China.
    Kong Y; He W; Zhang Z; Shen J; Yuan L; Gao X; An M; Ramsey TS
    J Environ Manage; 2022 Sep; 318():115601. PubMed ID: 35949098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation mechanism and step effect analysis of the crop gray water footprint in rice production.
    Wu M; Cao X; Ren J; Shu R; Zeng W
    Sci Total Environ; 2021 Jan; 752():141897. PubMed ID: 32889288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. China's industrial gray water footprint assessment and implications for investment in industrial wastewater treatment.
    Huang Y; Zhou B; Han R; Lu X; Li S; Li N
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7188-7198. PubMed ID: 31883074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water.
    Mekonnen MM; Hoekstra AY
    Environ Sci Technol; 2015 Nov; 49(21):12860-8. PubMed ID: 26440220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. China's provincial grey water footprint characteristic and driving forces.
    Zhang L; Dong H; Geng Y; Francisco MJ
    Sci Total Environ; 2019 Aug; 677():427-435. PubMed ID: 31059885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of water pollution in the Tibetan Plateau with contributions from agricultural and economic sectors: a case study of Lhasa River Basin.
    Li D; Tian P; Shao D; Hu T; Luo H; Dong B; Khan S; Cui Y; Luo Y
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20617-20631. PubMed ID: 34739671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Income impacts on household consumption's grey water footprint in China.
    Liao X; Chai L; Liang Y
    Sci Total Environ; 2021 Feb; 755(Pt 1):142584. PubMed ID: 33039883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grey water footprint evaluation and driving force analysis of eight economic regions in China.
    Cui S; Dong H; Wilson J
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):20380-20391. PubMed ID: 32239415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping multiple water pollutants across China using the grey water footprint.
    Feng H; Sun F; Liu Y; Zeng P; Deng L; Che Y
    Sci Total Environ; 2021 Sep; 785():147255. PubMed ID: 33933768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the anthropogenic nitrogen emissions to water using a hybrid approach in a city cluster: Insights into historical evolution, attribution, and mitigation potential.
    Zhang Z; Deng C; Dong L; Zou T; Yang Q; Wu J; Li H
    Sci Total Environ; 2023 Jan; 855():158500. PubMed ID: 36089012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grey water footprint of agricultural production: An assessment based on nitrogen surplus and high-resolution leaching runoff fractions in Turkey.
    Muratoglu A
    Sci Total Environ; 2020 Nov; 742():140553. PubMed ID: 32615375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of livestock pollution and its effects on a water source protection area in China.
    Yang J; Wang Y; Fang S; Qiang Y; Liang J; Yang G; Feng Y
    Environ Sci Pollut Res Int; 2020 May; 27(15):18632-18639. PubMed ID: 32200474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation and internal-external driving forces of grey water footprint efficiency in China's Yellow River Basin.
    Li Y; Liu Y; Yang L; Fu T
    PLoS One; 2023; 18(3):e0283199. PubMed ID: 36947510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal variations in arsenic mobility and bacterial diversity: The case study of Huangshui Creek, Shimen Realgar Mine, Hunan Province, China.
    Li W; Liu J; Hudson-Edwards KA
    Sci Total Environ; 2020 Dec; 749():142353. PubMed ID: 33370914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field and laboratory investigations on factors affecting the diel variation of arsenic in Huangshui Creek from Shimen Realgar Mine, China: implications for arsenic transport in an alkali stream.
    Luo T; Liu J
    Environ Geochem Health; 2023 Mar; 45(3):687-705. PubMed ID: 35275295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The grey water footprint of human and veterinary pharmaceuticals.
    Wöhler L; Niebaum G; Krol M; Hoekstra AY
    Water Res X; 2020 May; 7():100044. PubMed ID: 32462135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial-temporal evolution and driving factors of grey water footprint efficiency in the Yangtze River Economic Belt.
    Xu C; Liu Y; Fu T
    Sci Total Environ; 2022 Oct; 844():156930. PubMed ID: 35753457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic speciation in locally grown rice grains from Hunan Province, China: Spatial distribution and potential health risk.
    Ma L; Wang L; Jia Y; Yang Z
    Sci Total Environ; 2016 Jul; 557-558():438-44. PubMed ID: 27016689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.