These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36251519)

  • 21. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.
    Liang Z; Zhang K; Chen K; Gao C
    J Genet Genomics; 2014 Feb; 41(2):63-8. PubMed ID: 24576457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A CRISPR/LbCas12a-based method for highly efficient multiplex gene editing in Physcomitrella patens.
    Pu X; Liu L; Li P; Huo H; Dong X; Xie K; Yang H; Liu L
    Plant J; 2019 Nov; 100(4):863-872. PubMed ID: 31350780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The complete chloroplast genome of Gracilariopsis lemaneiformis (Rhodophyta) gives new insight into the evolution of family Gracilariaceae.
    Du Q; Bi G; Mao Y; Sui Z
    J Phycol; 2016 Jun; 52(3):441-50. PubMed ID: 27273536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning of
    Sun D; Zang X; Guo Y; Xiao D; Cao X; Liu Z; Zhang F; Jin Y; Shi J; Wang Z; Li R; Yangzong Z
    Genes (Basel); 2019 Apr; 10(5):. PubMed ID: 31035529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity.
    Wang YM; Wang HZ; Jian YZ; Luo ZT; Shao HW; Zhang WF
    Hum Gene Ther; 2022 Apr; 33(7-8):358-370. PubMed ID: 34963339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative physiological behaviors of Ulva lactuca and Gracilariopsis lemaneiformis in responses to elevated atmospheric CO
    Liu C; Zou D; Yang Y
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27493-27502. PubMed ID: 30047019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity and specificity of TRV-mediated gene editing in plants.
    Ali Z; Abul-Faraj A; Piatek M; Mahfouz MM
    Plant Signal Behav; 2015; 10(10):e1044191. PubMed ID: 26039254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP; Shah JM
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-cell transcriptome sequencing revealing the difference in photosynthesis and carbohydrate metabolism between epidermal cells and non-epidermal cells of
    Chen H; Hu Y; Li P; Feng X; Jiang M; Sui Z
    Front Plant Sci; 2022; 13():968158. PubMed ID: 36466256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L.
    Sugano SS; Shirakawa M; Takagi J; Matsuda Y; Shimada T; Hara-Nishimura I; Kohchi T
    Plant Cell Physiol; 2014 Mar; 55(3):475-81. PubMed ID: 24443494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature response of photosynthetic light- and carbon-use characteristics in the red seaweed Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta).
    Zou D; Gao K
    J Phycol; 2014 Apr; 50(2):366-75. PubMed ID: 26988193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system.
    Brooks C; Nekrasov V; Lippman ZB; Van Eck J
    Plant Physiol; 2014 Nov; 166(3):1292-7. PubMed ID: 25225186
    [No Abstract]   [Full Text] [Related]  

  • 36. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.
    Mashimo T
    Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The complete chloroplast genome of
    Zhang Y; Guo YM; Li TJ; Chen CH; Shen KN; Hsiao CD
    Mitochondrial DNA B Resour; 2016 Feb; 1(1):2-3. PubMed ID: 33473385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complete mitochondrial genome of agar-producing red alga Gracilariopsis chorda (Gracilariales).
    Yang EC; Kim KM; Kim SY; Yoon HS
    Mitochondrial DNA; 2014 Oct; 25(5):339-41. PubMed ID: 23789772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating the ploidy of Gracilariopsis lemaneiformis at both the cellular and genomic level
    Chen H; Feng X; Jiang M; Xiao B; Zhang J; Zhang W; Hu Y; Sui Z
    J Phycol; 2020 Oct; 56(5):1339-1348. PubMed ID: 32464702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system.
    Bassett AR; Tibbit C; Ponting CP; Liu JL
    Cell Rep; 2013 Jul; 4(1):220-8. PubMed ID: 23827738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.