These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 36251624)
21. Thromboinflammatory mechanisms in sickle cell disease - challenging the hemostatic balance. Conran N; De Paula EV Haematologica; 2020 Oct; 105(10):2380-2390. PubMed ID: 33054078 [TBL] [Abstract][Full Text] [Related]
22. Molecular mechanisms of hepatic dysfunction in sickle cell disease: lessons from Townes mouse model. Pradhan-Sundd T; Kato GJ; Novelli EM Am J Physiol Cell Physiol; 2022 Aug; 323(2):C494-C504. PubMed ID: 35759437 [TBL] [Abstract][Full Text] [Related]
23. The intriguing contribution of white blood cells to sickle cell disease - a red cell disorder. Okpala I Blood Rev; 2004 Mar; 18(1):65-73. PubMed ID: 14684149 [TBL] [Abstract][Full Text] [Related]
24. Microfluidics for investigating vaso-occlusions in sickle cell disease. Horton RE Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28376286 [TBL] [Abstract][Full Text] [Related]
25. Sickle Cell Disease and Thromboembolism: New Insights on the Pathophysiology, Diagnosis, and Treatment. Dobie G Clin Lab; 2023 Jul; 69(7):. PubMed ID: 37436376 [TBL] [Abstract][Full Text] [Related]
31. Hypercoagulability in Sickle Cell Disease: A Thrombo-Inflammatory Mechanism. Hamali HA Hemoglobin; 2023 Nov; 47(6):205-214. PubMed ID: 38189099 [TBL] [Abstract][Full Text] [Related]
32. Agonistic Anti-CD40 Antibody Triggers an Acute Liver Crisis With Systemic Inflammation in Humanized Sickle Cell Disease Mice. Yalamanoglu A; Dubach IL; Schulthess N; Ingoglia G; Swindle DC; Humar R; Schaer DJ; Buehler PW; Irwin DC; Vallelian F Front Immunol; 2021; 12():627944. PubMed ID: 33763072 [TBL] [Abstract][Full Text] [Related]
33. Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-occlusion in vivo. Zennadi R; Moeller BJ; Whalen EJ; Batchvarova M; Xu K; Shan S; Delahunty M; Dewhirst MW; Telen MJ Blood; 2007 Oct; 110(7):2708-17. PubMed ID: 17609430 [TBL] [Abstract][Full Text] [Related]
34. The role of blood rheology in sickle cell disease. Connes P; Alexy T; Detterich J; Romana M; Hardy-Dessources MD; Ballas SK Blood Rev; 2016 Mar; 30(2):111-8. PubMed ID: 26341565 [TBL] [Abstract][Full Text] [Related]
35. Is sickle cell disease-related neurotoxicity a systemic endotheliopathy? Palomo M; Diaz-Ricart M; Carreras E Hematol Oncol Stem Cell Ther; 2020 Jun; 13(2):111-115. PubMed ID: 32202249 [TBL] [Abstract][Full Text] [Related]
36. Adherent leukocytes capture sickle erythrocytes in an in vitro flow model of vaso-occlusion. Finnegan EM; Turhan A; Golan DE; Barabino GA Am J Hematol; 2007 Apr; 82(4):266-75. PubMed ID: 17094094 [TBL] [Abstract][Full Text] [Related]
38. Pathologic angiogenesis in the bone marrow of humanized sickle cell mice is reversed by blood transfusion. Park SY; Matte A; Jung Y; Ryu J; Anand WB; Han EY; Liu M; Carbone C; Melisi D; Nagasawa T; Locascio JJ; Lin CP; Silberstein LE; De Franceschi L Blood; 2020 Jun; 135(23):2071-2084. PubMed ID: 31990287 [TBL] [Abstract][Full Text] [Related]
39. Acute and chronic pain management in patients with sickle cell disease in the modern era: a comprehensive review. Tolu SS; Van Doren L Transfus Apher Sci; 2022 Oct; 61(5):103533. PubMed ID: 36058780 [TBL] [Abstract][Full Text] [Related]
40. Microfluidics in Sickle Cell Disease Research: State of the Art and a Perspective Beyond the Flow Problem. Aich A; Lamarre Y; Sacomani DP; Kashima S; Covas DT; de la Torre LG Front Mol Biosci; 2020; 7():558982. PubMed ID: 33763448 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]