BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36251751)

  • 1. Silicon Nitride Nanopores Formed by Simple Chemical Etching: DNA Translocations and TEM Imaging.
    Xia Z; Scott A; Keneipp R; Chen J; Niedzwiecki DJ; DiPaolo B; Drndić M
    ACS Nano; 2022 Nov; 16(11):18648-18657. PubMed ID: 36251751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lifetime and Stability of Silicon Nitride Nanopores and Nanopore Arrays for Ionic Measurements.
    Chou YC; Masih Das P; Monos DS; Drndić M
    ACS Nano; 2020 Jun; 14(6):6715-6728. PubMed ID: 32275381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering adjustable two-pore devices for parallel ion transport and DNA translocations.
    Chou YC; Chen J; Lin CY; Drndić M
    J Chem Phys; 2021 Mar; 154(10):105102. PubMed ID: 33722020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of metallized nanopores in silicon nitride membranes for single-molecule sensing.
    Wei R; Pedone D; Zürner A; Döblinger M; Rant U
    Small; 2010 Jul; 6(13):1406-14. PubMed ID: 20564484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow DNA transport through nanopores in hafnium oxide membranes.
    Larkin J; Henley R; Bell DC; Cohen-Karni T; Rosenstein JK; Wanunu M
    ACS Nano; 2013 Nov; 7(11):10121-10128. PubMed ID: 24083444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of single analyte and environmental samples with silicon nitride nanopores: Antarctic dirt particulates and DNA in artificial seawater.
    Niedzwiecki DJ; Chou YC; Xia Z; Thei F; Drndić M
    Rev Sci Instrum; 2020 Mar; 91(3):031301. PubMed ID: 32259993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA translocation through low-noise glass nanopores.
    Steinbock LJ; Bulushev RD; Krishnan S; Raillon C; Radenovic A
    ACS Nano; 2013 Dec; 7(12):11255-62. PubMed ID: 24274458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA characterization with ion beam-sculpted silicon nitride nanopores.
    Rollings RC; McNabb DS; Li J
    Methods Mol Biol; 2012; 870():79-97. PubMed ID: 22528259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Devices for Nanoscale Guiding of DNA through a 2D Nanopore.
    Niedzwiecki DJ; DiPaolo B; Lin CY; Castan A; Keneipp R; Drndić M
    ACS Sens; 2021 Jul; 6(7):2534-2545. PubMed ID: 34228425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and Deterministic Fabrication of Sub-5 Nanometer Solid-State Pores by Feedback-Controlled Laser Processing.
    Zvuloni E; Zrehen A; Gilboa T; Meller A
    ACS Nano; 2021 Jul; 15(7):12189-12200. PubMed ID: 34219449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of sub-20 nm nanopore arrays in membranes with embedded metal electrodes at wafer scales.
    Bai J; Wang D; Nam SW; Peng H; Bruce R; Gignac L; Brink M; Kratschmer E; Rossnagel S; Waggoner P; Reuter K; Wang C; Astier Y; Balagurusamy V; Luan B; Kwark Y; Joseph E; Guillorn M; Polonsky S; Royyuru A; Papa Rao S; Stolovitzky G
    Nanoscale; 2014 Aug; 6(15):8900-6. PubMed ID: 24964839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive and electrically actuated solid-state nanopores for sensing and manipulating DNA.
    Jiang Z; Mihovilovic M; Teich E; Stein D
    Methods Mol Biol; 2012; 870():241-64. PubMed ID: 22528268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The controlled fabrication of nanopores by focused electron-beam-induced etching.
    Yemini M; Hadad B; Liebes Y; Goldner A; Ashkenasy N
    Nanotechnology; 2009 Jun; 20(24):245302. PubMed ID: 19468165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin, High-Lifetime Silicon Nitride Membranes for Nanopore Sensing.
    Dutt S; Karawdeniya BI; Bandara YMNDY; Afrin N; Kluth P
    Anal Chem; 2023 Apr; 95(13):5754-5763. PubMed ID: 36930050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation.
    Xu X; Li C; Zhou Y; Jin Y
    ACS Sens; 2017 Oct; 2(10):1452-1457. PubMed ID: 28971672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown.
    Ying C; Houghtaling J; Eggenberger OM; Guha A; Nirmalraj P; Awasthi S; Tian J; Mayer M
    ACS Nano; 2018 Nov; 12(11):11458-11470. PubMed ID: 30335956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular transport through nanoporous silicon nitride membranes produced from self-assembling block copolymers.
    Montagne F; Blondiaux N; Bojko A; Pugin R
    Nanoscale; 2012 Sep; 4(19):5880-6. PubMed ID: 22899238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
    Schmidt T; Zhang M; Sychugov I; Roxhed N; Linnros J
    Nanotechnology; 2015 Aug; 26(31):314001. PubMed ID: 26180043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process.
    Yanagi I; Ishida T; Fujisaki K; Takeda K
    Sci Rep; 2015 Oct; 5():14656. PubMed ID: 26424588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductance-based profiling of nanopores: Accommodating fabrication irregularities.
    Bandara YMNDY; Nichols JW; Iroshika Karawdeniya B; Dwyer JR
    Electrophoresis; 2018 Feb; 39(4):626-634. PubMed ID: 29131359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.