BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36251764)

  • 1. Current strategies in biomaterial-based periosteum scaffolds to promote bone regeneration: A review.
    Wang J; Chen G; Chen ZM; Wang FP; Xia B
    J Biomater Appl; 2023 Feb; 37(7):1259-1270. PubMed ID: 36251764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Adhesive Hydrogel Biomimetic Periosteum to Promote Critical-Size Bone Defect Repair via Synergistic Osteogenesis and Angiogenesis.
    Yang Z; Yang Z; Ding L; Zhang P; Liu C; Chen D; Zhao F; Wang G; Chen X
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36395-36410. PubMed ID: 35925784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired Piezoelectric Periosteum to Augment Bone Regeneration via Synergistic Immunomodulation and Osteogenesis.
    Liu H; Shi Y; Zhu Y; Wu P; Deng Z; Dong Q; Wu M; Cai L
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12273-12293. PubMed ID: 36890691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periosteal Tissue Engineering: Current Developments and Perspectives.
    Lou Y; Wang H; Ye G; Li Y; Liu C; Yu M; Ying B
    Adv Healthc Mater; 2021 Jun; 10(12):e2100215. PubMed ID: 33938636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits.
    Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D
    J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration.
    Zhang W; Wang N; Yang M; Sun T; Zhang J; Zhao Y; Huo N; Li Z
    J Orthop Translat; 2022 Mar; 33():41-54. PubMed ID: 35228996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative morphometric analysis of biodegradable scaffolds as carriers for dental pulp and periosteal stem cells in a model of bone regeneration.
    Annibali S; Cicconetti A; Cristalli MP; Giordano G; Trisi P; Pilloni A; Ottolenghi L
    J Craniofac Surg; 2013 May; 24(3):866-71. PubMed ID: 23714898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic, Stiff, and Adhesive Periosteum with Osteogenic-Angiogenic Coupling Effect for Bone Regeneration.
    Yang Y; Xu T; Zhang Q; Piao Y; Bei HP; Zhao X
    Small; 2021 Apr; 17(14):e2006598. PubMed ID: 33705605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of chitosan to improve osteoinduction of chitosan/xanthan-based scaffolds for periosteal tissue engineering.
    Bombaldi de Souza RF; Bombaldi de Souza FC; Thorpe A; Mantovani D; Popat KC; Moraes ÂM
    Int J Biol Macromol; 2020 Jan; 143():619-632. PubMed ID: 31811849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Self-Adaptive Biomimetic Periosteum Employing Nitric Oxide Release for Augmenting Angiogenesis in Bone Defect Regeneration.
    Zhou Z; Liu Y; Li W; Zhao Z; Xia X; Liu J; Deng Y; Wu Y; Pan X; He F; Yang H; Lu W; Xu Y; Zhu X
    Adv Healthc Mater; 2024 Jan; 13(3):e2302153. PubMed ID: 37922941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold.
    Kang Y; Ren L; Yang Y
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9622-33. PubMed ID: 24858072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress of Periosteal Osteogenesis: The Prospect of In Vivo Bioreactor.
    Chen X; Yu B; Wang Z; Li Q; Dai C; Wei J
    Orthop Surg; 2022 Sep; 14(9):1930-1939. PubMed ID: 35794789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Scaffolds for Bone Tissue Engineering.
    Park JY; Park SH; Kim MG; Park SH; Yoo TH; Kim MS
    Adv Exp Med Biol; 2018; 1064():109-121. PubMed ID: 30471029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced osteogenesis by a biomimic pseudo-periosteum-involved tissue engineering strategy.
    Shi X; Chen S; Zhao Y; Lai C; Wu H
    Adv Healthc Mater; 2013 Sep; 2(9):1229-35. PubMed ID: 23495244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun Biomimetic Periosteum Capable of Controlled Release of Multiple Agents for Programmed Promoting Bone Regeneration.
    Zhao X; Zhuang Y; Cao Y; Cai F; Lv Y; Zheng Y; Yang J; Shi X
    Adv Healthc Mater; 2024 May; 13(12):e2303134. PubMed ID: 38348511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periosteum tissue engineering-a review.
    Li N; Song J; Zhu G; Li X; Liu L; Shi X; Wang Y
    Biomater Sci; 2016 Oct; 4(11):1554-1561. PubMed ID: 27722242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration of periosteum by human bone marrow stromal cell sheets.
    Syed-Picard FN; Shah GA; Costello BJ; Sfeir C
    J Oral Maxillofac Surg; 2014 Jun; 72(6):1078-83. PubMed ID: 24831936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decellularized Bone Matrix Scaffold for Bone Regeneration.
    Chen G; Lv Y
    Methods Mol Biol; 2018; 1577():239-254. PubMed ID: 28770492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.