These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 36251931)

  • 41. DNA-Assembled Chiral Satellite-Core Nanoparticle Superstructures: Two-State Chiral Interactions from Dynamic and Static Conformations.
    Ma L; Liu Y; Han C; Movsesyan A; Li P; Li H; Tang P; Yuan Y; Jiang S; Ni W; Yan H; Govorov AO; Wang ZM; Lan X
    Nano Lett; 2022 Jun; 22(12):4784-4791. PubMed ID: 35649094
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trace-Amount Detection of Chiral Molecules Based on Plasmonic Racemic Arrays Fabricated via Direct Laser Writing.
    Tan Y; Lu X; Ding T
    ACS Sens; 2024 Jun; 9(6):3290-3295. PubMed ID: 38832719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanophotonic Approaches for Chirality Sensing.
    Warning LA; Miandashti AR; McCarthy LA; Zhang Q; Landes CF; Link S
    ACS Nano; 2021 Oct; 15(10):15538-15566. PubMed ID: 34609836
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DNA-Guided Plasmonic Helix with Switchable Chirality.
    Lan X; Liu T; Wang Z; Govorov AO; Yan H; Liu Y
    J Am Chem Soc; 2018 Sep; 140(37):11763-11770. PubMed ID: 30129752
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes.
    Zhang Q; Hernandez T; Smith KW; Hosseini Jebeli SA; Dai AX; Warning L; Baiyasi R; McCarthy LA; Guo H; Chen DH; Dionne JA; Landes CF; Link S
    Science; 2019 Sep; 365(6460):1475-1478. PubMed ID: 31604278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook.
    Valev VK; Baumberg JJ; Sibilia C; Verbiest T
    Adv Mater; 2013 May; 25(18):2517-34. PubMed ID: 23553650
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bottom-Up Synthesis of Helical Plasmonic Nanorods and Their Application in Generating Circularly Polarized Luminescence.
    Chen J; Gao X; Zheng Q; Liu J; Meng D; Li H; Cai R; Fan H; Ji Y; Wu X
    ACS Nano; 2021 Sep; 15(9):15114-15122. PubMed ID: 34427090
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasmon-Enhanced Optical Chirality through Hotspot Formation in Surfactant-Directed Self-Assembly of Gold Nanorods.
    Severoni E; Maniappan S; Liz-Marzán LM; Kumar J; García de Abajo FJ; Galantini L
    ACS Nano; 2020 Dec; 14(12):16712-16722. PubMed ID: 33232119
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmonic polymers with strong chiroptical response for sensing molecular chirality.
    Zhai D; Wang P; Wang RY; Tian X; Ji Y; Zhao W; Wang L; Wei H; Wu X; Zhang X
    Nanoscale; 2015 Jun; 7(24):10690-8. PubMed ID: 26030276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Through-space transfer of chiral information mediated by a plasmonic nanomaterial.
    Ostovar pour S; Rocks L; Faulds K; Graham D; Parchaňský V; Bouř P; Blanch EW
    Nat Chem; 2015 Jul; 7(7):591-6. PubMed ID: 26100808
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing the plasmonic circular dichroism by entrapping chiral molecules at the core-shell interface of rod-shaped Au@Ag nanocrystals.
    Hou S; Yan J; Hu Z; Wu X
    Chem Commun (Camb); 2016 Feb; 52(10):2059-62. PubMed ID: 26687977
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unraveling the Complex Chirality Evolution in DNA-Assembled High-Order, Hybrid Chiroplasmonic Superstructures from Multi-Scale Chirality Mechanisms.
    Yuan Y; Li H; Yang H; Han C; Hu H; Govorov AO; Yan H; Lan X
    Angew Chem Int Ed Engl; 2022 Nov; 61(44):e202210730. PubMed ID: 36083592
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tuning the Growth of Chiral Gold Nanoparticles Through Rational Design of a Chiral Molecular Inducer.
    Van Gordon K; Baúlde S; Mychinko M; Heyvaert W; Obelleiro-Liz M; Criado A; Bals S; Liz-Marzán LM; Mosquera J
    Nano Lett; 2023 Nov; 23(21):9880-9886. PubMed ID: 37877612
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Halide-assisted differential growth of chiral nanoparticles with threefold rotational symmetry.
    Zheng J; Boukouvala C; Lewis GR; Ma Y; Chen Y; Ringe E; Shao L; Huang Z; Wang J
    Nat Commun; 2023 Jun; 14(1):3783. PubMed ID: 37355650
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multifaceted Gold-Palladium Bimetallic Nanorods and Their Geometric, Compositional, and Catalytic Tunabilities.
    Sun L; Zhang Q; Li GG; Villarreal E; Fu X; Wang H
    ACS Nano; 2017 Mar; 11(3):3213-3228. PubMed ID: 28230971
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Large-area 3D chiral plasmonic structures.
    Frank B; Yin X; Schäferling M; Zhao J; Hein SM; Braun PV; Giessen H
    ACS Nano; 2013 Jul; 7(7):6321-9. PubMed ID: 23806025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials.
    Sun L; Tao Y; Yang G; Liu C; Sun X; Zhang Q
    Adv Mater; 2023 Aug; ():e2306297. PubMed ID: 37572380
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reconfigurable Plasmonic Chirality: Fundamentals and Applications.
    Neubrech F; Hentschel M; Liu N
    Adv Mater; 2020 Oct; 32(41):e1905640. PubMed ID: 32077543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assembly of Gold Nanoparticles into Chiral Superstructures Driven by Circularly Polarized Light.
    Kim JY; Yeom J; Zhao G; Calcaterra H; Munn J; Zhang P; Kotov N
    J Am Chem Soc; 2019 Jul; 141(30):11739-11744. PubMed ID: 31329438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.