These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36252106)

  • 21. Gene- and variant-specific efficacy of serum/glucocorticoid-regulated kinase 1 inhibition in long QT syndrome types 1 and 2.
    Giannetti F; Barbieri M; Shiti A; Casini S; Sager PT; Das S; Pradhananga S; Srinivasan D; Nimani S; Alerni N; Louradour J; Mura M; Gnecchi M; Brink P; Zehender M; Koren G; Zaza A; Crotti L; Wilde AAM; Schwartz PJ; Remme CA; Gepstein L; Sala L; Odening KE
    Europace; 2023 May; 25(5):. PubMed ID: 37099628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture.
    Lahti AL; Kujala VJ; Chapman H; Koivisto AP; Pekkanen-Mattila M; Kerkelä E; Hyttinen J; Kontula K; Swan H; Conklin BR; Yamanaka S; Silvennoinen O; Aalto-Setälä K
    Dis Model Mech; 2012 Mar; 5(2):220-30. PubMed ID: 22052944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of patient-specific induced pluripotent stem cell lines with Type 2 Long QT Syndrome and the KCNH2 c.379C > T pathogenic variant.
    Goual L; Bounasri E; Vincenti M; Amédro P; Desprat R; Bernex F; Lemaitre JM; Pasquié JL; Lacampagne A; Thireau J; Meli AC
    Stem Cell Res; 2023 Oct; 72():103192. PubMed ID: 37660555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intragenic suppression of trafficking-defective KCNH2 channels associated with long QT syndrome.
    Delisle BP; Slind JK; Kilby JA; Anderson CL; Anson BD; Balijepalli RC; Tester DJ; Ackerman MJ; Kamp TJ; January CT
    Mol Pharmacol; 2005 Jul; 68(1):233-40. PubMed ID: 15851652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The KCNH2-IVS9-28A/G mutation causes aberrant isoform expression and hERG trafficking defect in cardiomyocytes derived from patients affected by Long QT Syndrome type 2.
    Mura M; Mehta A; Ramachandra CJ; Zappatore R; Pisano F; Ciuffreda MC; Barbaccia V; Crotti L; Schwartz PJ; Shim W; Gnecchi M
    Int J Cardiol; 2017 Aug; 240():367-371. PubMed ID: 28433559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling Reentry in the Short QT Syndrome With Human-Induced Pluripotent Stem Cell-Derived Cardiac Cell Sheets.
    Shinnawi R; Shaheen N; Huber I; Shiti A; Arbel G; Gepstein A; Ballan N; Setter N; Tijsen AJ; Borggrefe M; Gepstein L
    J Am Coll Cardiol; 2019 May; 73(18):2310-2324. PubMed ID: 31072576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes.
    Matsa E; Dixon JE; Medway C; Georgiou O; Patel MJ; Morgan K; Kemp PJ; Staniforth A; Mellor I; Denning C
    Eur Heart J; 2014 Apr; 35(16):1078-87. PubMed ID: 23470493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a Patient-Specific p.D85N-Potassium Voltage-Gated Channel Subfamily E Member 1-Induced Pluripotent Stem Cell-Derived Cardiomyocyte Model for Drug-Induced Long QT Syndrome.
    Kim M; Ye D; John Kim CS; Zhou W; Tester DJ; Giudicessi JR; Ackerman MJ
    Circ Genom Precis Med; 2021 Jun; 14(3):e003234. PubMed ID: 34003017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation.
    Matsa E; Rajamohan D; Dick E; Young L; Mellor I; Staniforth A; Denning C
    Eur Heart J; 2011 Apr; 32(8):952-62. PubMed ID: 21367833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilization of the genome aggregation database, in silico tools, and heterologous expression patch-clamp studies to identify and demote previously published type 2 long QT syndrome: Causative variants from pathogenic to likely benign.
    Mattivi CL; Ye D; Tester DJ; Clemens DJ; Zhou W; Giudicessi JR; Ackerman MJ
    Heart Rhythm; 2020 Feb; 17(2):315-323. PubMed ID: 31493592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of KCNH2 heterozygous knockout induced pluripotent stem cell (iPSC) line (Long and Short QT Syndrome).
    Wang B; Ren Q; Cui X; Shan W; Guo X; Wang X; Wang J; Li Y; An G
    Stem Cell Res; 2024 Jun; 77():103400. PubMed ID: 38547667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the CACNA1C-R518C Missense Mutation in the Pathobiology of Long-QT Syndrome Using Human Induced Pluripotent Stem Cell Cardiomyocytes Shows Action Potential Prolongation and L-Type Calcium Channel Perturbation.
    Estes SI; Ye D; Zhou W; Dotzler SM; Tester DJ; Bos JM; Kim CSJ; Ackerman MJ
    Circ Genom Precis Med; 2019 Aug; 12(8):e002534. PubMed ID: 31430211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Advantages, Challenges, and Future of Human-Induced Pluripotent Stem Cell Lines in Type 2 Long QT Syndrome.
    Cai D; Zheng Z; Jin X; Fu Y; Cen L; Ye J; Song Y; Lian J
    J Cardiovasc Transl Res; 2023 Feb; 16(1):209-220. PubMed ID: 35976484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-missense variants of KCNH2 show better outcomes in type 2 long QT syndrome.
    Aizawa T; Wada Y; Hasegawa K; Huang H; Imamura T; Gao J; Kashiwa A; Kohjitani H; Fukuyama M; Kato K; Kato ET; Hisamatsu T; Ohno S; Makiyama T; Kimura T; Horie M
    Europace; 2023 Apr; 25(4):1491-1499. PubMed ID: 36861347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Derivation and characterization of two human induced pluripotent stem cell lines (NUIGi004-A) and (NUIGi012-A) from two patients with LQT2 disease.
    Liu M; Ge N; Zhang J; Yang M; Yang F; Krawczyk J; Ward D; McInerney V; O'Brien T; Shen S; Prendiville T
    Stem Cell Res; 2021 Oct; 56():102555. PubMed ID: 34628246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic basis for type 2 long QT syndrome caused by KCNH2 mutations that disrupt conserved arginine residues in the voltage sensor.
    McBride CM; Smith AM; Smith JL; Reloj AR; Velasco EJ; Powell J; Elayi CS; Bartos DC; Burgess DE; Delisle BP
    J Membr Biol; 2013 May; 246(5):355-64. PubMed ID: 23546015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Association of Genetic and Clinical Aspects of Congenital Long QT Syndrome With Life-Threatening Arrhythmias in Japanese Patients.
    Shimizu W; Makimoto H; Yamagata K; Kamakura T; Wada M; Miyamoto K; Inoue-Yamada Y; Okamura H; Ishibashi K; Noda T; Nagase S; Miyazaki A; Sakaguchi H; Shiraishi I; Makiyama T; Ohno S; Itoh H; Watanabe H; Hayashi K; Yamagishi M; Morita H; Yoshinaga M; Aizawa Y; Kusano K; Miyamoto Y; Kamakura S; Yasuda S; Ogawa H; Tanaka T; Sumitomo N; Hagiwara N; Fukuda K; Ogawa S; Aizawa Y; Makita N; Ohe T; Horie M; Aiba T
    JAMA Cardiol; 2019 Mar; 4(3):246-254. PubMed ID: 30758498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ANK2 functionally interacts with KCNH2 aggravating long QT syndrome in a double mutation carrier.
    Gessner G; Runge S; Koenen M; Heinemann SH; Koenen M; Haas J; Meder B; Thomas D; Katus HA; Schweizer PA
    Biochem Biophys Res Commun; 2019 May; 512(4):845-851. PubMed ID: 30929919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput discovery of trafficking-deficient variants in the cardiac potassium channel K
    Kozek KA; Glazer AM; Ng CA; Blackwell D; Egly CL; Vanags LR; Blair M; Mitchell D; Matreyek KA; Fowler DM; Knollmann BC; Vandenberg JI; Roden DM; Kroncke BM
    Heart Rhythm; 2020 Dec; 17(12):2180-2189. PubMed ID: 32522694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Establishment of human embryonic stem cell WAe009-A-88 carrying a long QT syndrome mutation in KCNH2.
    Wen H; Sun L; Zhong J; Wu F
    Stem Cell Res; 2022 Jul; 62():102795. PubMed ID: 35526388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.