These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36252238)

  • 1. Scalable Self-Limiting Dielectrophoretic Trapping for Site-Selective Assembly of Nanoparticles.
    Han J; Niroui F; Lang JH; Bulović V
    Nano Lett; 2022 Oct; 22(20):8258-8265. PubMed ID: 36252238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-yield self-limiting single-nanowire assembly with dielectrophoresis.
    Freer EM; Grachev O; Duan X; Martin S; Stumbo DP
    Nat Nanotechnol; 2010 Jul; 5(7):525-30. PubMed ID: 20526324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise Placement of Metallic Nanowires on a Substrate by Localized Electric Fields and Inter-Nanowire Electrostatic Interaction.
    Choi UH; Kim J
    Nanomaterials (Basel); 2017 Oct; 7(10):. PubMed ID: 29048363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale assembly of single nanowires through capillary-assisted dielectrophoresis.
    Collet M; Salomon S; Klein NY; Seichepine F; Vieu C; Nicu L; Larrieu G
    Adv Mater; 2015 Feb; 27(7):1268-73. PubMed ID: 25410279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise semiconductor nanowire placement through dielectrophoresis.
    Raychaudhuri S; Dayeh SA; Wang D; Yu ET
    Nano Lett; 2009 Jun; 9(6):2260-6. PubMed ID: 19419157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening.
    Vijayaraghavan A; Sciascia C; Dehm S; Lombardo A; Bonetti A; Ferrari AC; Krupke R
    ACS Nano; 2009 Jul; 3(7):1729-34. PubMed ID: 19514710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled dielectrophoretic nanowire self-assembly using atomic layer deposition and suspended microfabricated electrodes.
    Baca AI; Brown JJ; Bertness KA; Bright VM
    Nanotechnology; 2012 Jun; 23(24):245301. PubMed ID: 22640980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly flexible platform for nanowire sensor assembly using a combination of optically induced and conventional dielectrophoresis.
    Lin YH; Ho KS; Yang CT; Wang JH; Lai CS
    Opt Express; 2014 Jun; 22(11):13811-24. PubMed ID: 24921573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoretic assembly of single gold nanoparticle into nanogap electrodes.
    Yoon SH; Kumar S; Kim GH; Choi YS; Kim TW; Khondaker SI
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3427-33. PubMed ID: 19051890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures.
    Henning-Knechtel A; Wiens M; Lakatos M; Heerwig A; Ostermaier F; Haufe N; Mertig M
    Beilstein J Nanotechnol; 2016; 7():948-56. PubMed ID: 27547612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamically controlled dielectrophoresis using resonant tuning.
    Padhy P; Zaman MA; Jensen MA; Hesselink L
    Electrophoresis; 2021 May; 42(9-10):1079-1092. PubMed ID: 33599974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid flow-assisted dielectrophoretic assembly of nanowires.
    Oh K; Chung JH; Riley JJ; Liu Y; Liu WK
    Langmuir; 2007 Nov; 23(23):11932-40. PubMed ID: 17935364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectrophoretic growth of metallic nanowires and microwires: theory and experiments.
    Ranjan N; Mertig M; Cuniberti G; Pompe W
    Langmuir; 2010 Jan; 26(1):552-9. PubMed ID: 19924880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel 'leadless' dielectrophoresis chip with dot matrix electrodes for patterning nanowires.
    Liu L; Chen K; Huang D; Wang X; Xiang N; Ni Z
    Nanotechnology; 2017 Jul; 28(28):285302. PubMed ID: 28574852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-Dimensional Au-ZnO Heteronanostructures for Ultraviolet Light Detectors by a Two-Step Dielectrophoretic Assembly Method.
    Ding H; Shao J; Ding Y; Liu W; Tian H; Li X
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12713-8. PubMed ID: 26009795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array.
    Wu Y; Ren Y; Tao Y; Hou L; Jiang H
    Anal Chem; 2018 Oct; 90(19):11461-11469. PubMed ID: 30192521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and Characterization of Double- and Single-Clamped CuO Nanowire Based Nanoelectromechanical Switches.
    Jasulaneca L; Livshits AI; Meija R; Kosmaca J; Sondors R; Ramma MM; Jevdokimovs D; Prikulis J; Erts D
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33419203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires.
    Bhatt KH; Velev OD
    Langmuir; 2004 Jan; 20(2):467-76. PubMed ID: 15743092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D nanoelectrokinetic model for predictive assembly of nanowire arrays using floating electrode dielectrophoresis.
    Singh SK; Aryaan N; Shikder MRA; Byles BW; Pomerantseva E; Subramanian A
    Nanotechnology; 2019 Jan; 30(2):025301. PubMed ID: 30398168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.