These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36252303)

  • 1. 3D printed optical sensor for highly sensitive detection of picric acid using perovskite nanocrystals and mechanism of photo-electron transfer.
    Kumar A; Nath P; Kumar V; Kumar Tailor N; Satapathi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 286():121956. PubMed ID: 36252303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and selective detection of Fe (III) by using a smartphone-based device as a portable detector and hydroxyl functionalized metal-organic frameworks as the fluorescence probe.
    Zhao Y; Ouyang H; Feng S; Luo Y; Shi Q; Zhu C; Chang YC; Li L; Du D; Yang H
    Anal Chim Acta; 2019 Oct; 1077():160-166. PubMed ID: 31307705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium.
    Liu SG; Luo D; Li N; Zhang W; Lei JL; Li NB; Luo HQ
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21700-9. PubMed ID: 27471907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A metal-enhanced fluorescence sensing platform for selective detection of picric acid in aqueous medium.
    Kaja S; Damera DP; Nag A
    Anal Chim Acta; 2020 Sep; 1129():12-23. PubMed ID: 32891381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized ink jetted paper device for electroanalytical detection of picric acid.
    Mohan JM; Amreen K; Kulkarni MB; Javed A; Dubey SK; Goel S
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112056. PubMed ID: 34425529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomass-based indole derived fluorescence sensor composited with cellulose paper: Detection of picric acid in food and environment samples.
    Zhang Y; Cui X; Wang X; Feng X; Cheng W; Xiong R; Huang C
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126963. PubMed ID: 37722642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A perylene monoimide probe based fluorescent micelle sensor for the selective and sensitive detection of picric acid.
    Li W; Zhou H; Hayat Nawaz MA; Niu N; Yang N; Ren J; Yu C
    Anal Methods; 2020 Nov; 12(44):5353-5359. PubMed ID: 33104151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient nanostructured Cs
    Rajeevan G; Ramesh A; Madanan AS; Varghese S; Abraham MK; Ibrahim Shkhair A; Indongo G; Arathy BK; George S
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 318():124481. PubMed ID: 38776668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms.
    Malik AH; Hussain S; Kalita A; Iyer PK
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26968-76. PubMed ID: 26580229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence chemical sensor for determining trace levels of nitroaromatic explosives in water based on conjugated polymer with guanidinium side groups.
    Mi HY; Liu JL; Guan MM; Liu QW; Zhang ZQ; Feng GD
    Talanta; 2018 Sep; 187():314-320. PubMed ID: 29853053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled structures of N-alkylated bisbenzimidazolyl naphthalene in aqueous media for highly sensitive detection of picric acid.
    Wu YC; Luo SH; Cao L; Jiang K; Wang LY; Xie JC; Wang ZY
    Anal Chim Acta; 2017 Jul; 976():74-83. PubMed ID: 28576320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of samarium orthoferrite-based perovskite nanoparticles as a turn-on fluorescent probe for trace level detection of picric acid.
    Kayhomayun Z; Ghani K; Zargoosh K
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121627. PubMed ID: 35853251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips.
    Patel R; Bothra S; Kumar R; Crisponi G; Sahoo SK
    Biosens Bioelectron; 2018 Apr; 102():196-203. PubMed ID: 29145072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular Systems with MSA-Capped CdTe and CdTe/ZnS Core/Shell Quantum Dots as Superselective and Ultrasensitive Optical Sensors for Picric Acid Explosive.
    Dutta P; Saikia D; Adhikary NC; Sarma NS
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24778-90. PubMed ID: 26484725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of carbon quantum dots/polyaniline nanocomposite: Towards highly sensitive detection of picric acid.
    Ahmed HM; Ghali M; Zahra W; Ayad MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 260():119967. PubMed ID: 34082352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.
    Park E; Lim S
    Lab Chip; 2021 Nov; 21(22):4364-4378. PubMed ID: 34585708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p-Pyridine BODIPY-based fluorescence probe for highly sensitive and selective detection of picric acid.
    Li H; Jia R; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117793. PubMed ID: 31757705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Ultrasensitive Picric Acid Sensor Based on a Robust 3D Hydrogen-Bonded Organic Framework.
    Jiang W; Xia L; Li D; Wu P; Zou T; Yuan X; Wei W; Wang J
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Sensitive and Interference-Free Electrochemical Nitrite Detection in a 3D Printed Miniaturized Device.
    Pal A; Amreen K; Dubey SK; Goel S
    IEEE Trans Nanobioscience; 2021 Apr; 20(2):175-182. PubMed ID: 33661734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Detection of Blood Creatinine Using Binary Copper-Iron Oxide and rGO-Based Nanocomposite on 3D Printed Ag-Electrode under POC Settings.
    Singh P; Mandal S; Roy D; Chanda N
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3446-3458. PubMed ID: 34142794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.